Abstract

The analysis of the performance losses of a multistage compressor concerning the air contaminant is not widespread in literature and, the mutual interactions of particle materials, air humidity, and compressor load are not well studied. The airborne micrometric particles that enter the compressor can deposit on the internal surfaces, causing the loss of performance of the machine. In this paper, several experimental tests have been carried out on a multistage compressor unit. A detailed analysis has been carried out considering soil and soot ingestion, as well as the air relative humidity (RH) (ranging from 50% RH to 80% RH) and compressor rotating velocity. Several combinations of particle diameter, material, and operating conditions have been considered. The amount of contaminant at the compressor outlet has been measured and the capture efficiency of the whole machine has been determined. Over the exposure time, the capture efficiency ranges from 0.2 to 0.6 according to the powder type and compressor inlet conditions. The capability of the compressor to collect particles changes over time as a function of the condition, even if several tested cases appear characterized by an almost constant capture efficiency trend. In addition, the performance degradation has been monitored over time and, with the reference of the particle concentration, the present experimental campaign covers about 500 operating hours of an actual installation. After a detailed evaluation of experimental uncertainty, the performance losses due to particle contamination have been assessed. The losses in the compressor performance have been estimated by means of the pressure ratio of the axial stages. The maximum degradation has been estimated equal to 0.53%/h for the compressor pressure ratio. Soot particles appear stickier, especially in the presence of higher humidity and represent the most detrimental operating conditions for the compressor unit.

References

1.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.10.1115/1.4035070
2.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Pinelli
,
M.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2019
, “
Gas Turbine Fouling Tests: Review, Critical Analysis and Impact Behavior Map
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032601
.10.1115/1.4041282
3.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
di Mare
,
L.
,
Montomoli
,
F.
, and
Pinelli
,
M.
,
2019
, “
Generalization of Particle Impact Behavior in Gas Turbine Via Non-Dimensional Grouping
,”
Prog. Energy Combust. Sci.
,
74
, pp.
103
151
.10.1016/j.pecs.2019.05.001
4.
Zaba
,
T.
, and
Lombardi
,
P.
,
1984
, “
Experience in the Operation of Air Filters in Gas Turbine Installations
,”
ASME
Paper No. 84-GT-39.10.1115/1984-GT-39
5.
Haskell
,
R. W.
,
1989
, “
Gas Turbine Compressor Operating Environment and Material Evaluation
,”
ASME
Paper No. 89-GT-42.10.1115/89-GT-42
6.
Mezheritsky
,
A. D.
, and
Sudarev
,
A. V.
,
1990
, “
The Mechanism of Fouling and the Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors
,”
ASME
Paper No. 90-GT-103.10.1115/90-GT-103
7.
Hill
,
R. C.
,
Hubbell
,
R. H.
, and
Krapp
,
M. L.
,
1960
, “
Operation and Maintenance of Remotely Controlled Gas-Turbine Units
,”
ASME
Paper No. 60-GTP-14
.10.1115/60-GTP-14
8.
Bultzo
,
C.
,
1980
, “
Some Unique Gas Turbine Problems
,”
ASME
Paper No. 80-GT-179.10.1115/80-GT-179
9.
Brun
,
K.
,
Grimley
,
T. A.
,
Foiles
,
W. C.
, and
Kurz
,
R.
,
2015
, “
Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042605
.10.1115/1.4028618
10.
Perullo
,
C. A.
,
Lieuwen
,
T.
,
Barron
,
J.
,
Grace
,
D.
, and
Angello
,
L.
,
2015
, “
Evaluation of Air Filtration Options for an Industrial Gas Turbine
,”
ASME
Paper No. GT2015-43736.10.1115/GT2015-43736
11.
Schroth
,
T.
, and
Cagna
,
M.
,
2008
, “
Economical Benefits of Highly Efficient Three-Stage Intake Air Filtration for Gas Turbines
,”
ASME
Paper No. GT2008-50280.10.1115/GT2008-50280
12.
Bammert
,
K.
, and
Woelk
,
G. U.
,
1979
, “
Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
ASME
Paper No. 79-GT-102.10.1115/1979-GT-102
13.
Jombo
,
G.
,
Pecinka
,
J.
,
Sampath
,
S.
, and
Mba
,
D.
,
2018
, “
Influence of Fouling on Compressor Dynamics: Experimental and Modeling Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032603
.10.1115/1.4037913
14.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.10.1115/1.4006236
15.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.10.1115/1.2219763
16.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.10.1115/98-GT-416
17.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors - Causes, Effects, Susceptibility and Sensitivity
,”
ASME
Paper No. GT2009-59239.10.1115/GT2009-59239
18.
Bettocchi
,
R.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2005
, “
A Multistage Compressor Test Facility: Uncertainty Analysis and Preliminary Test Results
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
170
177
.10.1115/1.1787516
19.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2017
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022605
.10.1115/1.4034239
20.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley & Sons
,
Hoboken, NJ
.
21.
Endo
,
Y.
,
Hasebe
,
S.
, and
Kousaka
,
Y.
,
1997
, “
Dispersion of Aggregates of Fine Powder by Acceleration in an Air Stream and Its Application to the Evaluation of Adhesion Between Particles
,”
Powder Technol.
,
91
(
1
), pp.
25
30
.10.1016/S0032-5910(96)03229-9
22.
Calvert
,
G.
,
Ghadiri
,
M.
, and
Tweedie
,
R.
,
2009
, “
Aerodynamic Dispersion of Cohesive Powders: A Review of Understanding and Technology
,”
Adv. Powder Technol.
,
20
(
1
), pp.
4
16
.10.1016/j.apt.2008.09.001
23.
Harris
,
F. R.
,
1961
, “
A 7500-SHP Gas Turbine for Naval Boost Propulsion
,”
ASME
Paper No. 61-GTP-5.10.1115/1961-GTP-5
24.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.10.1115/1.2906565
25.
Doring
,
F.
,
Staudacher
,
S.
,
Koch
,
C.
, and
Weißschuh
,
M.
,
2017
, “
Modeling Particle Deposition Effects in Aircraft Engine Compressors
,”
ASME J. Turbomach.
,
139
(
5
), p.
051003
.10.1115/1.4035072
26.
Kurz
,
R.
,
Musgrove
,
G.
, and
Brun
,
K.
,
2017
, “
Experimental Evaluation of Compressor Blade Fouling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032601
.10.1115/1.4034501
27.
Omidvarborna
,
H.
,
Kumar
,
A.
, and
Kim
,
D.-S.
,
2015
, “
Recent Studies on Soot Modeling for Diesel Combustion
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
635
647
.10.1016/j.rser.2015.04.019
28.
ISO
,
2016
, “
Road Vehicles—Test Contaminants For Filter Evaluation—Part 1: Arizona Test Dust
,” ISO, Geneva, Switzerland, Standard No.
12103–1
.https://www.iso.org/standard/63386.html
29.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2020
, “
Deposition Pattern Analysis on a Fouled Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4049510
30.
Allison Gas Turbine,
1971
, “
Operation and Maintenance Manual. Turboshaft Models 250-C18, A, B & C
,” Detroit Diesel Allison, Division of General Motors Corporation, Indianapolis, IN.
31.
ISO/IEC
2008
, “Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement,” ISO/IEC, Geneva, Switzerland, Standard No.
GUIDE 98-3 [JCGM/WG1/100] (GUM:1995)
.https://www.iso.org/standard/50461.html
32.
JCGM
,
2008
, “Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement,” JCGM, Standard No.
JCGM 100
.https://ncc.nesdis.noaa.gov/documents/documentation/JCGM_100_2008_E.pdf
33.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
John Wiley and Sons
,
Hoboken, NJ
.
34.
Belyaev
,
S. P.
, and
Levin
,
L. M.
,
1974
, “
Techniques for Collection of Representative Aerosol Samples
,”
J. Aerosol Sci.
,
5
(
4
), pp.
325
338
.10.1016/0021-8502(74)90130-X
35.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
,
1989
, “
Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
343
350
.10.1115/1.3240259
36.
Schnittger
,
J. R.
,
1962
, “
The New 40-MW Gas Turbine of the Vastervik Central Station
,”
ASME
Paper No. 62-GTP-1.10.1115/1962-GTP-1
37.
Melino
,
F.
,
Peretto
,
A.
, and
Spina
,
P. R.
,
2010
, “
Development and Validation of a Model for Axial Compressor Fouling Simulation
,”
ASME
Paper No. GT2010-22947.10.1115/GT2010-22947
38.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Nonuniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.10.1115/1.4025227
39.
Boyce
,
M. P.
, and
Gonzalez
,
F.
,
2007
, “
A Study of On-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
114
122
.10.1115/1.2181180
40.
Schneider
,
E.
,
Bussjaeger
,
S. D.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2010
, “
Analysis of Compressor on-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), pp.
1
7
.10.1115/1.4000133
You do not currently have access to this content.