Abstract

The quality of liquid fuel spray injection determines to a large extent the performance of aero-engine combustors. This investigation focuses on the detailed characterization of the liquid fuel spray in a test rig targeted at aero-engine applications. The liquid fuel is injected as a hollow cone by a simplex atomizer and the injector comprises a radial swirler. Two features of the droplet distribution are less commonly found. First, the distributions of droplet diameters exhibit nonaxisymmetric patterns, which are investigated for three types of swirlers. Second, it is found that the size-conditioned velocity distributions feature a single wide peak for small droplets and become bimodal for the largest droplets, with a first peak at low velocities, and a second one at higher velocities. Experiments are complemented with large eddy simulations and Lagrangian particle tracking. The spray interacts with the lateral injector surface and requires a droplet–wall interaction model for the liquid film. Simulations do not retrieve the lack of rotational symmetry that is found experimentally indicating that this feature is not linked to the nature of the flow. This is also consistent with further experiments with a different atomizer confirming that this is due to imperfections in the atomizer geometry. Another result is that certain swirler designs are more robust to atomizer imperfections. Simulations accounting for the liquid film yield a bimodal distribution for the droplets' axial velocity distribution which is not obtained without this model, indicating that it is important to represent the droplet–wall interaction.

References

1.
Lefebvre
,
A. H.
,
1995
, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
J. Eng. Gas Turbines Power
,
117
(
4
), pp.
617
654
.10.1115/1.2815449
2.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
3.
Lefebvre
,
A. H.
,
1989
,
Atomization and Sprays
,
CRC Press
,
Boca Raton, FL
.
4.
Rajamanickam
,
K.
, and
Basu
,
S.
,
2017
, “
Insights Into the Dynamics of Spray-Swirl Interactions
,”
J. Fluid Mech.
,
810
, pp.
82
126
.10.1017/jfm.2016.710
5.
Sharma
,
S.
,
Ghate
,
K.
,
Sundararajan
,
T.
, and
Sahu
,
S.
,
2019
, “
Effects of Air Swirler Geometry on Air and Spray Droplet Interactions in a Spray Chamber
,”
Adv. Mech. Eng.
,
11
(
5
), pp.
1
15
.10.1177/1687814019850978
6.
Hardalupas
,
Y.
,
Taylor
,
A. M. K. P.
, and
Whitelaw
,
J. H.
,
1992
, “
Particle Dispersion in a Vertical Round Sudden-Expansion Flow
,”
Philos. Trans. R. Soc. A
,
341
(
1662
), pp.
411
442
.10.1098/rsta.1992.0110
7.
Dring
,
R. P.
, and
Suo
,
M.
,
1978
, “
Particle Trajectories in Swirling Flows
,”
J. Energy
,
2
(
4
), pp.
232
237
.10.2514/3.47974
8.
Kriebel
,
A. R.
,
1961
, “
Particle Trajectories in a Gas Centrifuge
,”
J. Basic Eng.
,
83
(
3
), pp.
333
339
.10.1115/1.3658957
9.
McDonnell
,
V. G.
,
Cameron
,
C. D.
, and
Samuelsen
,
G. S.
,
1990
, “
Symmetry Assessment of an Air-Blast Atomizer Spray
,”
J. Propul. Power
,
6
(
4
), pp.
375
381
.10.2514/3.25446
10.
Lecourt
,
R.
,
Linassier
,
G.
, and
Lavergne
,
G.
,
2011
, “
Detailed Characterisation of a Swirled Air/Kerosene Spray in Reactive and Non-Reactive Conditions Downstream From an Actual Turbojet Injection System
,”
ASME
Paper No. GT2011-45173.10.1115/GT2011-45173
11.
Jaegle
,
F.
,
Senoner
,
J.-M.
,
García
,
M.
,
Bismes
,
F.
,
Lecourt
,
R.
,
Cuenot
,
B.
, and
Poinsot
,
T.
,
2011
, “
Eulerian and Lagrangian Spray Simulations of an Aeronautical Multipoint Injector
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2099
2107
.10.1016/j.proci.2010.07.027
12.
Franzelli
,
B.
,
Vié
,
A.
,
Fiorina
,
B.
, and
Darabiha
,
N.
,
2013
, “
Large Eddy Simulation of Swirling Kerosene/Air Spray Flame Using Tabulated Chemistry
,”
ASME
Paper No. GT2013-94451.10.1115/GT2013-94451
13.
Guedot
,
L.
,
Lartigue
,
G.
, and
Moureau
,
V.
,
2018
,
Modeling and Analysis of the Interactions of Coherent Structures With a Spray Flame in a Swirl Burner
,
Springer
,
Cham, Switzerland
, pp.
15
26
.
14.
Renaud
,
A.
,
Ducruix
,
S.
, and
Zimmer
,
L.
,
2019
, “
Experimental Study of the Precessing Vortex Core Impact on the Liquid Fuel Spray in a Gas Turbine Model Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111022
.10.1115/1.4044998
15.
Keller
,
J.
,
Gebretsadik
,
M.
,
Habisreuther
,
P.
,
Turrini
,
F.
,
Zarzalis
,
N.
, and
Trimis
,
D.
,
2015
, “
Numerical and Experimental Investigation on Droplet Dynamics and Dispersion of a Jet Engine Injector
,”
Int. J. Multiphase Flow
,
75
, pp.
144
162
.10.1016/j.ijmultiphaseflow.2015.05.004
16.
Gajan
,
P.
,
Strzelecki
,
A.
,
Platet
,
B.
,
Lecourt
,
R.
, and
Giuliani
,
F.
,
2007
, “
Investigation of Spray Behavior Downstream of an Aeroengine Injector With Acoustic Excitation
,”
J. Propul. Power
,
23
(
2
), pp.
390
397
.10.2514/1.22394
17.
Kim
,
W.
,
Zhang
,
S.
,
Palies
,
P.
,
Cohen
,
J.
,
Liljenberg
,
S.
, and
Hautman
,
D.
,
2012
, “
The Behavior of Liquid Fuel Sprays in Acoustically-Forced Air Swirler Flows
,”
ASME
Paper No. GT2012-68922.10.1115/GT2012-68922
18.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
264
270
.10.1115/1.2132379
19.
Tachibana
,
S.
,
Saito
,
K.
,
Yamamoto
,
T.
,
Makida
,
M.
,
Kitano
,
T.
, and
Kurose
,
R.
,
2015
, “
Experimental and Numerical Investigation of Thermo-Acoustic Instability in a Liquid-Fuel Aero-Engine Combustor at Elevated Pressure: Validity of Large-Eddy Simulation of Spray Combustion
,”
Combust. Flame
,
162
(
6
), pp.
2621
2637
.10.1016/j.combustflame.2015.03.014
20.
Lee
,
J.-Y.
,
Lubarsky
,
E.
, and
Zinn
,
B. T.
,
2005
, “
Slow” Active Control of Combustion Instabilities by Modification of Liquid Fuel Spray Properties
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1757
1764
.10.1016/j.proci.2004.08.206
21.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2020
, “
High Amplitude Combustion Instabilities in an Annular Combustor Inducing Pressure Field Deformation and Flame Blow Off
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011016
.10.1115/1.4045515
22.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3717
3724
.10.1016/j.proci.2016.08.008
23.
Vignat
,
G.
,
Durox
,
D.
,
Prieur
,
K.
, and
Candel
,
S.
,
2019
, “
An Experimental Study Into the Effect of Injector Pressure Loss on Self-Sustained Combustion Instabilities in a Swirled Spray Burner
,”
Proc. Combust. Inst.
,
37
(
4), pp. 5205–5213.
10.1016/j.proci.2018.06.125
24.
Durox
,
D.
,
Ducruix
,
S.
, and
Lacas
,
F.
,
1999
, “
Flow Seeding With an Air Nebulizer
,”
Exp. Fluids
,
27
(
5
), pp.
408
413
.10.1007/s003480050365
25.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
1972
, “
Combustion Aerodynamics
,” Wiley, Hoboken, NJ.
26.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
,
Lancien
,
T.
,
Vicquelin
,
R.
, and
Candel
,
S.
,
2021
, “
Investigation of Transient PVC Dynamics in a Strongly Swirled Spray Flame using High Speed Planar Laser Imaging of SnO2 Microparticles
,”
Combust. Flame
, 225, pp.
305
319
.10.1016/j.combustflame.2020.11.009
27.
McDonnell
,
V. G.
,
Samuelsen
,
G. S.
,
Wang
,
M. R.
,
Hong
,
C. H.
, and
Lai
,
W. H.
,
1994
, “
Interlaboratory Comparison of Phase Doppler Measurements in a Research Simplex Atomizer Spray
,”
J. Propul. Power
,
10
(
3
), pp.
402
409
.10.2514/3.23749
28.
Prieur
,
K.
,
2017
, “
Dynamique de la Combustion Dans un Foyer Annulaire Multi Injecteurs Diphasique
,” Ph.D. thesis,
Université Paris-Saclay
,
Gif sur Yvette, France
.
29.
Wang
,
H.
,
McDonell
,
V. G.
,
Sowa
,
W. A.
, and
Samuelsen
,
S.
,
1994
, “
Experimental Study of a Model Gas Turbine Combustor Swirl Cup, Part II: Droplet Dynamics
,”
J. Propul. Power
,
10
(
4
), pp.
446
452
. 10.2514/3.51391
30.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys
,.,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
31.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
32.
Baya Toda
,
H.
,
Cabrit
,
O.
,
Balarac
,
G.
,
Bose
,
S.
,
Lee
,
J.
,
Choi A N
,
H.
, and
Nicoud
,
F.
,
2010
, “
A Subgrid-Scale Model Based on Singular Values for LES in Complex Geometries
,”
Center for Turbulence Research Proceedings of the Summer Program
, Stanford University, CA, Dec., pp.
193
202
.https://www.researchgate.net/publication/265653113_A_subgrid-scale_model_based_on_singular_values_for_LES_in_complex_geometries
33.
Daviller
,
G.
,
Brebion
,
M.
,
Xavier
,
P.
,
Staffelbach
,
G.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2017
, “
A Mesh Adaptation Strategy to Predict Pressure Losses in LES of Swirled Flows
,”
Flow Turbul. Combust.
,
99
(
1
), pp.
93
118
.10.1007/s10494-017-9808-z
34.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Vereins Deutscher Ing.
,
77
, pp.
318
320
.
35.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
36.
Sanchez
,
P. S.
,
2012
, “
Dynamique de la Combustion Dans un Foyer Annulaire Multi-Injecteurs Diphasique
,” Ph.D. thesis,
Université de Toulouse
,
France
.
37.
Chaussonnet
,
G.
,
Riber
,
E.
,
Vermorel
,
O.
,
Cuenot
,
B.
,
Gepperth
,
S.
, and
Koch
,
R.
,
2013
, “
Large Eddy Simulation of a Prefilming Airblast Atomizer
,”
ILASS, 25th European Conference on Liquid Atomization and Spray Systems
, Chania, Greece, Sept. 1–4.10.13140/RG.2.1.4757.8961
38.
Lo Schiavo
,
E.
,
Laera
,
D.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2020
, “
Effects of Liquid Fuel/Wall Interaction on Thermoacoustic Instabilities in Swirling Spray Flames
,”
Combust. Flame
,
219
, pp.
86
101
.10.1016/j.combustflame.2020.04.015
39.
Sanjosé
,
M.
,
Senoner
,
J.
,
Jaegle
,
F.
,
Cuenot
,
B.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2011
, “
Fuel Injection Model for Euler-Euler and Euler-Lagrange Large-Eddy Simulations of an Evaporating Spray Inside an Aeronautical Combustor
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
514
529
.10.1016/j.ijmultiphaseflow.2011.01.008
40.
Hopfinger
,
E. J.
, and
Lasheras
,
J. C.
,
1996
, “
Explosive Breakup of a Liquid Jet by a Swirling Coaxial Gas Jet
,”
Phys. Fluids
,
8
(
7
), pp.
1696
1698
.10.1063/1.868981
41.
Muthuselvan
,
G.
,
Ghate
,
K. D.
,
Rao
,
M. S.
,
Iyengar
,
V. S.
,
Thirumalachari
,
S.
, and
Kothandaraman
,
S.
,
2018
, “
Experimental Study of Spray Breakup Phenomena in Small-Scale Simplex Atomizers With and Without Air Swirl
,”
At. Sprays
,
28
(
4
), pp.
299
320
.10.1615/AtomizSpr.2018021190
42.
Chauveau
,
C.
,
Birouk
,
M.
,
Halter
,
F.
, and
Gökalp
,
I.
,
2019
, “
An Analysis of the Droplet Support Fiber Effect on the Evaporation Process
,”
Int. J. Heat Mass Transfer
,
128
, pp.
885
891
.10.1016/j.ijheatmasstransfer.2018.09.029
43.
Rajendram Soundadarajan
,
P.
,
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2020
, “
Effect of Different Fuels on Combustion Instabilities in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4049702
You do not currently have access to this content.