Abstract

A bluff-body turbulent combustor is mapped for its thermo-acoustic stability across variation in airflow rate, nondimensionalized as the Reynolds number (Re) and fuel composition. The combustor stability is evaluated for three fuels, namely, pure hydrogen (PH), synthesis natural gas (SNG), and syngas (SG). The combustion dynamics display markedly different behavior across the fuels, in the extent of the unstable region, as well as the observed dominant Eigenvalues. At low Re, SNG displays stable combustion, while SG exhibits high amplitude oscillations at the fundamental duct acoustic mode. As the Re is increased, SNG displays very high amplitude oscillations at the duct acoustic mode, while SG exhibit relatively low amplitude oscillations at the third harmonic. In the case of PH, high amplitude oscillations observed at higher Re at the first harmonic. These peculiarities are investigated in light of the role of mean flame stabilization. The combustion dynamics of the fuels is influenced by the global equivalence ratio, as well as the jet momentum ratio. These effects significantly demarcate the dynamics of SNG and SG combustion. This is seen manifested in the mean flame structure of flame at high amplitude oscillations, whereby result in SNG flame to be present in the wake, while the SG flame resides in the shear layer. The driving by the flame because of their mean stabilization is quantified by a spatial Rayleigh index. It confirms the presence of large driving regions for SNG compared to that of SG, results in the observed differences in amplitude of the oscillations.

References

1.
Ryzhkov
,
A.
,
Bogatova
,
T.
, and
Gordeev
,
S.
,
2018
, “
Technological Solutions for an Advanced IGCC Plant
,”
Fuel
,
214
, pp.
63
72
.10.1016/j.fuel.2017.10.099
2.
Goy
,
C. J.
,
James
,
S. R.
, and
Rea
,
S.
,
2005
, “
Monitoring Combustion Instabilities: E.ON UK's Experience
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
T.
,
Lieuwen
, and
V.
,
Yang
, eds., Vol.
210
,
Progress in Astronautics and Aeronautics
, AIAA, Reston, VA, Chap. 8. https://arc.aiaa.org/doi/abs/10.2514/5.9781600866807.0163.0175
3.
Rayleigh
,
L.
,
1878
,
Theory of Sound
, Vol.
2
,
Dover
,
New York
, p.
226
.
4.
Ranga Dinesh
,
K. K. J.
,
Jiang
,
X.
,
Kirkpatrick
,
M. P.
, and
Malalasekera
,
W.
,
2012
, “
Combustion Characteristics of H2/N2 and H2/CO Syngas Non-Premixed Flames
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16186
16200
.10.1016/j.ijhydene.2012.08.027
5.
Ranga Dinesh
,
K. K. J.
,
Jiang
,
X.
,
van Oijen
,
J. A.
,
Bastiaans
,
R. J. M.
, and
de Goey
,
L. P. H.
,
2013
, “
Hydrogen-Enriched Non-Premixed Jet Flames: Effects of Preferential Diffusion
,”
Int. J. Hydrogen Energy
,
38
(
11
), pp.
4848
4863
.10.1016/j.ijhydene.2013.01.171
6.
Ranga Dinesh
,
K. K. J.
,
Luo
,
K. H.
,
Kirkpatrick
,
M. P.
, and
Malalasekera
,
W.
,
2013
, “
Burning Syngas in a High Swirl Burner: Effects of Fuel Composition
,”
Int. J. Hydrogen Energy
,
38
(
21
), pp.
9028
9042
.10.1016/j.ijhydene.2013.05.021
7.
Ranga Dinesh
,
K. K. J.
,
Jiang
,
X.
, and
van Oijen
,
J. A.
,
2013
, “
Hydrogen-Enriched Non-Premixed Jet Flames: Compositional Structures With Near-Wall Effects
,”
Int. J. Hydrogen Energy
,
38
(
12
), pp.
5150
5164
.10.1016/j.ijhydene.2013.02.041
8.
Ranga Dinesh
,
K. K. J.
,
Jiang
,
X.
, and
van Oijen
,
J. A.
,
2014
, “
Hydrogen-Enriched Non-Premixed Jet Flames: Analysis of the Flame Surface, Flame Normal, Flame Index and Wobbe Index
,”
Int. J. Hydrogen Energy
,
39
(
12
), pp.
6753
6763
.10.1016/j.ijhydene.2014.01.208
9.
Hwang
,
J.
,
Bouvet
,
N.
,
Sohn
,
K.
, and
Yoon
,
Y.
,
2013
, “
Stability Characteristics of Non-Premixed Turbulent Jet Flames of Hydrogen and Syngas Blends With Coaxial Air
,”
Int. J. Hydrogen Energy
,
38
(
12
), pp.
5139
5149
.10.1016/j.ijhydene.2013.01.182
10.
Ferguson
,
D.
,
Richard
,
G. A.
, and
Straub
,
D.
,
2008
, “
Fuel Interchangeability for Lean Premixed Combustion in Gas Turbine Engines
,”
ASME
Paper No. GT2008-51261.10.1115/GT2008-51261
11.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
12.
Lieuwen
,
T.
,
Neumeier
,
Y.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors
,”
Combust. Sci. Technol.
,
135
(
1–6
), pp.
193
211
.10.1080/00102209808924157
13.
Zinn
,
B. T.
, and
Lieuwen
,
T. C.
,
2005
,
Combustion Instabilities: Basic Concepts. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, Vol.
210
, AIAA, Reston, VA, pp.
3
26
.
14.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
1999
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME
Paper No. 99-GT-003.10.1115/99-GT-003
15.
Hegde
,
U. G.
,
Reuter
,
D.
,
Daniel
,
B. R.
, and
Zinn
,
B. T.
,
1987
, “
Flame Driving of Longitudinal Instabilities in Dump Type Ramjet Combustors
,”
Combust. Sci. Technol.
,
55
(
4–6
), pp.
125
138
.10.1080/00102208708947075
16.
Smith
,
D. A.
, and
Zukoski
,
E. E.
,
1985
, “
Combustion Instability Sustained by Unsteady Vortex Combustion
,”
AIAA
Paper No. 1985-1248.10.2514/6.1985-1248
17.
Sivasegaram
,
S.
, and
Whitelaw
,
J. H.
,
1987
, “
Oscillations in Confined Disk-Stabilized Flames
,”
Combust. Flame
,
68
(
2
), pp.
121
129
.10.1016/0010-2180(87)90051-4
18.
Katsuki
,
M.
, and
Whitelaw
,
J. H.
,
1986
, “
The Influence of Duct Geometry on Unsteady Premixed Flames
,”
Combust. Flame
,
63
(
1–2
), pp.
87
94
.10.1016/0010-2180(86)90113-6
19.
Keller
,
J. O.
,
Vaneveld
,
L.
,
Korschelt
,
D.
,
Hubbard
,
G. L.
,
Ghoniem
,
A. F.
,
Daily
,
J. W.
, and
Oppenheim
,
A. K.
,
1982
, “
Mechanism of Instabilities in Turbulent Combustion Leading to Flashback
,”
AIAA J.
,
20
(
2
), pp.
254
262
.10.2514/3.51073
20.
Heitor
,
M. V.
,
Taylor
,
A. M. K. P.
, and
Whitelaw
,
J. H.
,
1984
, “
Influence of Confinement on Combustion Instabilities of Premixed Flames Stabilized on Axisymmetric Baffles
,”
Combust. Flame
,
57
(
1
), pp.
109
121
.10.1016/0010-2180(84)90141-X
21.
Abouseif
,
G. E.
,
Keklak
,
J. A.
, and
Toong
,
T. Y.
,
1984
, “
Ramjet Rumble: The Low-Frequency Instability Mechanism in Coaxial Dump Combustors
,”
Combust. Sci. Technol.
,
36
(
1–2
), pp.
83
108
.10.1080/00102208408923727
22.
Deshmukh
,
N. N.
, and
Sharma
,
S. D.
,
2017
, “
Suppression of Thermo-Acoustic Instability Using Air Injection in Horizontal Rijke Tube
,”
J. Energy Inst.
,
90
(
3
), pp.
485
495
.10.1016/j.joei.2016.03.001
23.
Li
,
S.
,
Zheng
,
Y.
,
Zhu
,
M.
,
Martinez
,
D. M.
, and
Jiang
,
X.
,
2017
, “
Large-Eddy Simulation of Flow and Combustion Dynamics in a Lean Partially Premixed Swirling Combustor
,”
J. Energy Inst.
,
90
(
1
), pp.
120
131
.10.1016/j.joei.2015.09.004
24.
Yilmaz
,
H.
, and
Yilmaz
,
I.
,
2019
, “
Effects of Synthetic Gas Constituents on Combustion and Emission Behavior of Premixed H2/CO/CO2/CNG Mixture Flames
,”
J. Energy Inst.
,
92
(
4
), pp.
1091
1106
.10.1016/j.joei.2018.06.008
25.
Natarajan
,
J.
,
Lieuwen
,
T. C.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
.10.1016/j.combustflame.2007.05.003
26.
Hong
,
S.
,
Shanbhogue
,
S. J.
,
Speth
,
R. L.
, and
Ghoniem
,
A. F.
,
2013
, “
On the Phase Between Pressure and Heat Release Fluctuations for Propane/Hydrogen Flames and Its Role in Mode Transitions
,”
Combust. Flame
,
160
(
12
), pp.
2827
2842
.10.1016/j.combustflame.2013.07.001
27.
Lieuwen
,
T. C.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Auto-Ignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
28.
Zhou
,
Q.
,
Cheung
,
C. S.
,
Leung
,
C. W.
,
Li
,
X.
, and
Huang
,
Z.
,
2019
, “
Effects of Diluents on Laminar Burning Characteristics of Bio-Syngas at Elevated Pressure
,”
Fuel
,
248
, pp.
8
15
.10.1016/j.fuel.2019.03.062
29.
Taamallah
,
S.
,
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2015
, “
Thermo-Acoustic Instabilities in Lean Premixed Swirl-Stabilized Combustion and Their Link to Acoustically Coupled and Decoupled Flame Macrostructures
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3273
3282
.10.1016/j.proci.2014.07.002
30.
Shanbhogue
,
S. J.
,
Sanusi
,
Y. S.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
31.
Taamallah
,
S.
,
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Correspondence Between “Stable” Flame Macrostructure and Thermo-Acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071505
.10.1115/1.4029173
32.
Michaels
,
D.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2017
, “
The Impact of Reactants Composition and Temperature on the Flow Structure in a Wake Stabilized Laminar Lean Premixed CH4/H2/Air Flames; Mechanism and Scaling
,”
Combust. Flame
,
176
, pp.
151
161
.10.1016/j.combustflame.2016.10.007
33.
Hong
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2015
, “
Impact of Fuel Composition on the Recirculation Zone Structure and Its Role in Lean Premixed Flame Anchoring
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1493
1500
.10.1016/j.proci.2014.05.150
34.
Speth
,
R. L.
, and
Ghoniem
,
A. F.
,
2009
, “
Using a Strained Flame Model to Collapse Dynamic Mode Data in a Swirl-Stabilized Syngas Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2993
3000
.10.1016/j.proci.2008.05.072
35.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.10.1016/j.combustflame.2010.04.016
36.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.10.1115/1.3204532
37.
Davis
,
D. W.
,
Therkelsen
,
P. L.
,
Littlejohn
,
D.
, and
Cheng
,
R. K.
,
2013
, “
Effects of Hydrogen on the Thermo-Acoustics Coupling Mechanisms of Low-Swirl Injector Flames in a Model Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3135
3143
.10.1016/j.proci.2012.05.050
38.
Therkelsen
,
P. L.
,
Portillo
,
J. E.
,
Littlejohn
,
D.
,
Martin
,
S. M.
, and
Cheng
,
R. K.
,
2013
, “
Self-Induced Unstable Behaviors of CH4 and H2/CH4 Flames in a Model Combustor With a Low-Swirl Injector
,”
Combust. Flame
,
160
(
2
), pp.
307
321
.10.1016/j.combustflame.2011.11.008
39.
García-Armingol
,
T.
, and
Ballester
,
J.
,
2015
, “
Operational Issues in Premixed Combustion of Hydrogen-Enriched and Syngas Fuels
,”
Int. J. Hydrogen Energy
,
40
(
2
), pp.
1229
1243
.10.1016/j.ijhydene.2014.11.042
40.
Allison
,
P. M.
,
Driscoll
,
J. F.
, and
Ihme
,
M.
,
2013
, “
Acoustic Characterization of a Partially-Premixed Gas Turbine Model Combustor: Syngas and Hydrocarbon Fuel Comparisons
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3145
3153
.10.1016/j.proci.2012.06.157
41.
Emadi
,
M.
,
Karkow
,
D.
,
Melendez
,
A.
, and
Ratner
,
A.
,
2013
, “
Parameter Variations and the Effects of Hydrogen: An Experimental Investigation in a Lean Premixed Low Swirl Combustor
,”
Int. J. Hydrogen Energy
,
38
(
13
), pp.
5401
5409
.10.1016/j.ijhydene.2013.02.096
42.
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2007
, “
Acoustics Measurements in a Lean Premixed Combustor Operated on Hydrogen/Hydrocarbon Fuel Mixtures
,”
Int. J. Hydrogen Energy
,
32
(
8
), pp.
1103
1112
.10.1016/j.ijhydene.2006.07.008
43.
Figura
,
L.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D.
,
2007
, “
The Effects of Fuel Composition on Flame Structure and Combustion Dynamics in a Lean Premixed Combustor
,”
ASME
Paper No. GT2007-27298.10.1115/GT2007-27298
44.
Lee
,
M. C.
,
Park
,
S.
,
Kim
,
U.
,
Kim
,
S.
,
Yoon
,
J.
,
Joo
,
S.
, and
Yoon
,
Y.
,
2013
, “
Effect of Hydrogen Content on the Gas Turbine Combustion Performance of Synthetic Natural Gas
,”
ASME
Paper No. GT2013-95966.10.1115/GT2013-95966
45.
Park
,
J.
, and
Lee
,
M. C.
,
2016
, “
Combustion Instability Characteristics of H2/CO/CH4 Syngases and Synthetic Natural Gases in a Partially-Premixed Gas Turbine Combustor—Part I: Frequency and Mode Analysis
,”
Int. J. Hydrogen Energy
,
41
(
18
), pp.
7484
7493
.10.1016/j.ijhydene.2016.02.047
46.
Park
,
J.
, and
Lee
,
M. C.
,
2016
, “
Combustion Instability Characteristics of H2/CO/CH4 Syngases and Synthetic Natural Gases in a Partially Premixed Gas Turbine Combustor—Part II: Time Lag Analysis
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1304
1312
.10.1016/j.ijhydene.2015.10.065
47.
Yoon
,
J.
,
Seongpil
,
J.
,
Jeongjin
,
K.
,
Lee
,
M. C.
,
Jong
,
G.
, and
Yoon
,
Y.
,
2017
, “
Effects of Convection Time on the High Harmonic Combustion Instability in a Partially Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3753
3761
.10.1016/j.proci.2016.06.105
48.
Cho
,
I. O.
, and
Lee
,
M. C.
,
2016
, “
Investigation Into the Combustion Instability of Synthetic Natural Gases Using High-Speed Flame Images and Their Proper Orthogonal Decomposition
,”
Int. J. Hydrogen Energy
,
41
(
45
), pp.
20731
20743
.10.1016/j.ijhydene.2016.09.201
49.
Park
,
S.
,
Kim
,
U.
,
Lee
,
M. C.
,
Kim
,
S.
, and
Cha
,
D.
,
2013
, “
The Effects and Characteristics of Hydrogen in SNG on Gas Turbine Combustion Using a Diffusion Type Combustor
,”
Int. J. Hydrogen Energy
,
38
(
29
), pp.
12847
12855
.10.1016/j.ijhydene.2013.07.063
50.
Baraiya
,
N. A.
, and
Chakravarthy
,
S. R.
,
2019
, “
Effect of Syngas Composition on High-Frequency Combustion Instability in a Non-Premixed Turbulent Combustor
,”
Int. J. Hydrogen Energy
,
44
(
12
), pp.
6299
–6
312
.10.1016/j.ijhydene.2019.01.115
51.
Baraiya
,
N. A.
, and
Chakravarthy
,
S. R.
,
2019
, “
Excitation of High-Frequency Thermoacoustic Oscillations by Syngas in a Non-Premixed Bluff-Body Combustor
,”
Int. J. Hydrogen Energy, 7
;
44
(
29
), pp.
15598
–15
609
.10.1016/j.ijhydene.2019.04.087
52.
Baraiya
,
N. A.
, and
Chakravarthy
,
S. R.
,
2020
, “
Syngas Combustion Dynamics in a Bluff-Body Turbulent Combustor
,”
Dynamics and Control of Energy Systems
,
Springer
,
Singapore
, pp.
239
263
.
53.
Baraiya
,
N. A.
, and
Chakravarthy
,
S. R.
,
2018
, “
Effect of the Chemical Composition of Syngas on Combustion Dynamics Inside Bluff-Body Type Turbulent Syngas Combustor
,”
ASME Paper No. GT2018-76963.
54.
Baraiya
,
N. A.
, and
Chakravarthy
,
S. R.
,
2019
, “
The Role of Mean Flame Anchoring on the Stability Characteristics of Syngas, Synthesis Natural Gas, and Hydrogen Fuels in a Turbulent Non-Premixed Bluff-Body Combustor
,”
ASME
Paper No. GT2019-91981.10.1115/GT2019-91981
55.
Lee
,
M. C.
,
Seo
,
S. B.
,
Chung
,
J. H.
,
Kim
,
S. M.
,
Joo
,
Y. J.
, and
Ahn
,
D. H.
,
2010
, “
Gas Turbine Combustion Performance Test of Hydrogen and Carbon Monoxide Synthetic Gas
,”
Fuel
,
89
(
7
), pp.
1485
1491
.10.1016/j.fuel.2009.10.004
56.
Lee
,
M. C.
,
Seo
,
S. B.
,
Yoon
,
J.
,
Kim
,
M.
, and
Yoon
,
Y.
,
2012
, “
Experimental Study on the Effect of N2, CO2, and Steam Dilution on the Combustion Performance of H2 and CO Synthetic Gas in an Industrial Gas Turbine
,”
Fuel
,
102
, pp.
431
438
.10.1016/j.fuel.2012.05.028
57.
Balachandran
,
R.
,
Chakravarthy
,
S. R.
, and
Sujith
,
R. I.
,
2008
, “
Characterization of an Acoustically Self-Excited Combustor for Spray Evaporation
,”
J. Propul. Power
,
24
(
6
), pp.
1382
1389
.10.2514/1.28851
58.
Altay
,
H. M.
,
Speth
,
R. L.
,
Hudgins
,
D. E.
, and
Ghoniem
,
A. F.
,
2009
, “
Flame–Vortex Interaction Driven Combustion Dynamics in a Backward-Facing Step Combustor
,”
Combust. Flame
,
156
(
5
), pp.
1111
1125
.10.1016/j.combustflame.2009.02.003
59.
Chakravarthy
,
S. R.
,
Sivakumar
,
R.
, and
Shreenivasan
,
O. J.
,
2007
, “
Vortex-Acoustic Lock-on in Bluff-Body and Backward-Facing Step Combustors
,”
Sadhana
,
32
(
1–2
), pp.
145
154
.10.1007/s12046-007-0013-y
60.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, Cambridge, UK.
61.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
You do not currently have access to this content.