Abstract

In the near future, due to the growing share of variable renewable energy in the electricity mix and the lack of large-scale electricity storage, coal plants will have to shift their role from base-load operation to providing fluctuating back-up power. However, current coal power plants, based on steam Rankine cycle, are not optimized for flexible part-load operation, resulting in an intrinsic inadequacy for fast load variations. The founding idea of the H2020 sCO2-Flex project is to improve the flexibility of pulverized coal power plants by adopting supercritical CO2 Brayton power cycles. Despite the extensive literature about the design of sCO2 plants, there is still limited discussion about the strategies to be implemented to maximize system efficiency during part-load operation. This paper aims to provide deeper insight about the potential of sCO2 power plants based on recompressed cycle with high-temperature recuperator (HTR) bypass configuration for small modular coal power plants (25 MWel). Analysis focuses on both design and part-load operation providing a preliminary sizing of each component and comparing different operating strategies. Results demonstrate that sCO2 coal power plants can achieve competitive efficiency in both nominal and part-load operation thanks to the progressive increase of heat exchangers effectiveness. Moreover, they can be operated down to 20% electric load increasing power range of coal plants. Finally, the possibility to optimize the cycle minimum pressure ensures a safe operation of the compressor far from the surge line and to increase the performance at low load.

References

1.
sCO2-Flex, 2021, “
sCO2-Flex
,” sCO2-Flex, accessed May 13, 2021, http://www.sco2-flex.eu/
2.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.10.1016/j.energy.2018.07.099
3.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
.10.1016/j.egypro.2014.03.128
4.
Mecheri
,
M.
,
2018
, “
SCO2 Closed Brayton Cycle for Coal-Fired Power Plant
,”
Second European Supercritical CO2 Conference
, Essen, Germany, Aug. 30–31, pp.
1
8
.https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00046046/Mecheri_Sco2_closed_Brayton_cycle.pdf
5.
Angelino
,
G.
,
1969
, “
Real Gas Effects in Carbon Dioxide Cycles
,”
ASME
Paper No. 69-GT-102.10.1115/69-GT-102
6.
Mecheri
,
M.
, and
Bedogni
,
S.
,
2018
, “
D1.3—Report on the Selected Cycle Architecture
,” Flex H2020 Project Deliverable.
7.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.10.1016/j.apenergy.2017.02.048
8.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
9.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
, K. Brun, P. Friedman, and R. Dennis, eds., Woodhead Publishing, Sawston, UK, p. 462.
10.
Mecheri
,
M.
,
2018
, “
D1.1—sCO2 Brayton Cycle Architecture and Components' Specifications
,” Flex H2020 Project Deliverable.https://www.sco2-flex.eu/wp-content/uploads/2019/06/D1.1-%E2%80%93-sCO2-Brayton-cycle-architecture-and-components%E2%80%99-specifications.pdf
11.
Opatril
,
J.
,
Hajek
,
P.
, and
Vlcek
,
Z.
,
2019
, “
D2.3—Boiler Modelling Report
,” Flex H2020 Project Deliverable.
12.
MATLAB, 2018, “MATLAB R2019b
,”
The MathWorks Inc., Natick, MA.
13.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
, 2018,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1
,”
National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
14.
Zhang
,
D.
, 2013,
Ultra-Supercritical Coal Power Plant, 1st Edition
,
Woodhead Publishing
,
Sawston, UK.
15.
Marion
,
J.
,
Kutin
,
M.
,
McClung
,
A.
,
Mortzheim
,
J.
, and
Ames
,
R.
, 2019, “
The STEP 10 MWe sCO2 Pilot Plant Demonstration,”
ASME
Paper No. GT2019-91917.
10.1115/GT2019-91917
16.
Alfani
,
D.
, Astolfi, M., Binotti, M., Romano, M. C., Macchi, E., Filippini, S., and Merlo, U.,
2019
, “
Sizing Criteria and Performance Evaluation of Direct Air Cooled Heat Rejection Units for Supercritical CO2 Power Plants
,”
Fifth International Seminar on ORC Power Systems
, Athens, Greece, Sept. 9–11, pp.
1
9
.https://www.researchgate.net/publication/335757840_Sizing_Criteria_and_Performance_Evaluation_of_Direct_Air_Cooled_Heat_Rejection_Units_for_Supercritical_CO2_Power_Plants
17.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
,
Silva
,
P.
, and
Macchi
,
E.
,
2020
, “
Off-Design Performance of CSP Plant Based on Supercritical CO2 Cycles
,”
SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems
, AIP Conference Proceedings 2303, p. 130001.10.1063/5.0029801
18.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” MIT-ANP- Series, The MIT Center for Advanced Nuclear Energy Systems, Technical Report No. MIT-ANP-TR-100, pp.
1
317
.http://hdl.handle.net/1721.1/17746
19.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
,
Campanari
,
S.
,
Casella
,
F.
, and
Silva
,
P.
,
2019
, “
Multi Objective Optimization of Flexible Supercritical CO2 Coal-Fired Power Plant
,”
ASME
Paper No. GT2019-91789.10.1115/GT2019-91789
20.
Thermoflow Inc., 2019, “Thermoflex,” Thermoflow Inc., Jacksonville, FL, accessed May 13, 2021, https://www.thermoflow.com/
21.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
22.
Frank
,
A. S. L.
,
Incropera
,
P.
,
DeWitt
,
D. P.
, and
Bergman
,
T. L.
,
2002
,
Fundamentals of Heat and Mass Transfer
, Vol.
13
,
Wiley
, Hoboken, NJ, p.
997
.
23.
Alfani, D., Astolfi
, M
.
,
Binotti
,
M.
,
Macchi
,
E.
, and
Silva
,
P.
,
2019
, “
Part-Load Operation of Coal Fired sCO2 Power Plants
,”
Third European Supercritical CO2 Conference
, Paris, France, Sept. 19–20, pp.
1
9
.
24.
Gimon
,
E.
, O’Boyle, M., Clack, C. T. M., and McKee, S.,
2017
,
The Coal Cost Crossover: Economic Viability of Existing Coal Compared to New Local Wind and Solar Resources,
Energy Innovation Policy and Technology LLC, San Francisco, CA.
25.
Wamsted
,
D.
, and
Feaster
,
S.
,
2019
, “
Coal-Fired Power Generation in Freefall Across Southeast U.S. One-Two Combination of Gas and Solar is Pushing Historically Dominant Industry Aside
,” Institute for Energy Economics and Financial Analysis (
IEEFA
), Lakewood, OH.https://ieefa.org/wp-content/uploads/2019/09/Coal-Fired-Generation-in-Freefall-Across-SE-US_October-2019.pdf
26.
Caldecott
,
B.
, Tulloch, D. J., Bouveret, G., Pfeiffer, A., Kruitwagen, L., McDaniels, J., and Dericks, G.,
2017
, “
The Fate of European Coal-Fired Power Stations Planned in the Mid-2000s: Insights for Policymakers, Companies, and Investors Considering New Coal
,”
Smith School of Enterprise and the Environment
, University of Oxford, UK.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3019030
28.
Terna S.p.A.,
2017
, “
TERNA Transparency Report: Actual Generation
,” Terna S.p.A., Rome, Italy, accessed May 13, 2021, https://www.terna.it/it/sistema-elettrico/transparency-report/actual-generation
29.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
, and
Silva
,
P.
,
2020
, “
D5.3—First Annual Performance in Steady State and Operation Range
,” Flex H2020 Project Deliverable.
You do not currently have access to this content.