Abstract

Reducing greenhouse gas emissions and high fuel expenses motivates manufacturers to design more efficient aircraft engines. For directly driven jet engines, this is possible through increased by-pass ratios for high propulsive efficiencies. This implies a change in the operating condition of the low-pressure turbine (LPT) toward lower rotational speeds at larger diameters. Turbine vane frames (TVFs) guide the airflow from the high-pressure turbine (HPT) to the LPT in radial and circumferential direction. The TVF setup integrates turning vanes and thus removes the need for a vane blade row in the first LPT stage. Consequently, the TVF yields a benefit for overall engine weight and length, resulting in overall efficiency gains. Experimental measurements have been conducted at the two-spool test rig at the Graz University of Technology, consisting of a single-stage HPT, the TVF, and the first LPT rotor. Engine-relevant flow conditions are achieved at the TVF inlet, including HPT tip clearance and purge air effects. Particle image velocimetry (PIV) was used to capture the flow field in between two struts of the TVF upstream of the splitter vanes. Flow data in the area of strong transient interactions between the HPT and the TVF are recorded and discussed in terms of aerodynamic performance. To reveal the unsteady behavior of the fluid, the flow field has been recorded at six serial stator–rotor positions. Two data sets of varying HPT purge flows were obtained to characterize the effect of purge air inside the measurement domain.

References

1.
Paniagua
,
G.
,
Dénos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.10.1115/1.1791644
2.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2009
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall-Profiled Axial Turbine
,”
ASME
Paper No. GT2009-59653.10.1115/GT2009-59653
3.
Patinios
,
M.
,
Merli
,
F.
,
Hafizovic
,
A.
, and
Göttlich
,
E.
,
2021
, “
The Interaction of Purge Flows With Secondary Flow Features in Turbine Center Frames
,”
ASME
Paper No. GT2021-58586. 10.1115/GT2021-58586
4.
Merli
,
F.
,
Hafizovic
,
A.
,
Krajnc
,
N.
,
Schien
,
M.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2022
, “
The Interaction of Main Stream Flow and Cavity Flows in Turbine Center Frames and Turbine Vane Frames
,”
ASME
Paper No. GT2022-82458.10.1115/GT2022-82458
5.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
ASME
Paper No. GT2006-90307.10.1115/GT2006-90307
6.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2008
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME
Paper No. GT2008-50471.10.1115/GT2008-50471
7.
Hubinka
,
J.
,
Paradiso
,
B.
,
Santner
,
C.
,
Pirker
,
H.-P.
, and
Göttlich
,
E.
,
2011
, “
Design and Operation of a Two Spool High Pressure Test Turbine Facility
,”
Proceedings of the Ninth European Turbomachinery Conference
, Istanbul, Turkey, Mar. 21–25, pp.
1531
1540
.https://www.researchgate.net/publication/290562492_Design_and_operation_of_a_two_spool_high_pressure_test_turbine_facility
8.
Göttlich
,
E.
,
Woisetschläger
,
J.
,
Pieringer
,
P.
,
Hampel
,
B.
, and
Heitmeir
,
F.
,
2006
, “
Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry
,”
ASME J. Turbomach.
,
128
(
1
), pp.
178
187
.10.1115/1.2103092
9.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide/by Markus Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kähler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Springer
,
Cham, Switzerland
.
10.
Lengani
,
D.
,
Santner
,
C.
,
Spataro
,
R.
, and
Göttlich
,
E.
,
2012
, “
Analysis Tools for the Unsteady Interactions in a Counter-Rotating Two-Spool Turbine Rig
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
248
257
.10.1016/j.expthermflusci.2012.05.010
11.
Persico
,
G.
,
Gaetani
,
P.
,
Dossena
,
V.
,
D'Ippolito
,
G.
, and
Osnaghi
,
C.
,
2009
, “
On the Definition of the Secondary Flow in Three-Dimensional Cascades
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
6
), pp.
667
676
.10.1243/09576509JPE836
12.
Sieverding
,
C. H.
, and
Heinemann
,
H.
,
1990
, “
The Influence of Boundary Layer State on Vortex Shedding From Flat Plates and Turbine Cascades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
181
187
.10.1115/1.2927631
13.
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Dellacasagrande
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2020
, “
Impact of Varying High- and Low-Pressure Turbine Purge Flows on a Turbine Center Frame and Low-Pressure Turbine System
,”
ASME J. Turbomach.
,
142
(
10
), p.
101011
.10.1115/1.4046452
14.
Mesny
,
A. W.
,
Glozier
,
M. A.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Li
,
Y. S.
,
Cleaver
,
D. J.
, and
Sangan
,
C. M.
,
2022
, “
Vortex Tracking of Purge-Mainstream Interactions in a Rotating Turbine Stage
,”
ASME J. Turbomach.
,
144
(
4
), p.
041011
.10.1115/1.4052690
15.
Carvalho Figueiredo
,
A. J.
,
Schreiner
,
B. D. J.
,
Mesny
,
A. W.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Li
,
Y. S.
,
Cleaver
,
D. J.
, and
Sangan
,
C. M.
,
2021
, “
Volumetric Velocimetry Measurements of Purge–Mainstream Interaction in a One-Stage Turbine
,”
ASME J. Turbomach.
,
143
(
4
), p.
041011
.10.1115/1.4050072
16.
Zerobin
,
S.
,
Bauinger
,
S.
,
Marn
,
A.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Unsteady Flow Field of a Purged High Pressure Turbine Based on Mode Detection
,”
ASME
Paper No. GT2017-63619.10.1115/GT2017-63619
17.
Faustmann
,
C.
,
Zerobin
,
S.
,
Spataro
,
R.
,
Marn
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2015
, “
On the Acoustics of a Turning Mid Turbine Frame With Embedded Design in a Two-Stage Test-Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
5
), pp.
529
538
.10.1177/0957650915594927
18.
Lengani
,
D.
,
Spataro
,
R.
,
Peterleithner
,
J.
, and
Göttlich
,
E.
,
2015
, “
Unsteady Flow Evolution Through a Turning Midturbine Frame—Part 2: Spectral Analysis
,”
J. Propul. Power
,
31
(
6
), pp.
1597
1606
.10.2514/1.B35487
19.
Lengani
,
D.
,
Spataro
,
R.
,
Paradiso
,
B.
, and
Göttlich
,
E.
,
2015
, “
Unsteady Flow Evolution Through a Turning Midturbine Frame—Part 1: Time-Resolved Flow
,”
J. Propul. Power
,
31
(
6
), pp.
1586
1596
.10.2514/1.B35486
20.
Sanz
,
W.
,
Zerobin
,
S.
,
Egger
,
M.
,
Pieringer
,
P.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2018
, “
Steady CFD Simulation of a High Pressure Turbine Rotor With Hub and Shroud Purge Flow
,”
ASME
Paper No. GT2018-75642.10.1115/GT2018-75642
21.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Bhadravati Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows—Part I: The Influence of Turbine Purge Flow Rates
,”
ASME J. Turbomach.
,
140
(
6
), p.
061009
.10.1115/1.4039362
22.
Lengani
,
D.
,
Santner
,
C.
,
Spataro
,
R.
,
Paradiso
,
B.
, and
Göttlich
,
E.
,
2012
, “
Experimental Investigation of the Unsteady Flow Field Downstream of a Counter-Rotating Two-Spool Turbine Rig
,”
ASME
Paper No. GT2012-68583.10.1115/GT2012-68583
23.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
,
Banieghbal
,
M. R.
,
Hodson
,
H. P.
, and
Denton
,
J. D.
,
2001
, “
Blade-Row Interaction in a High-Pressure Turbine
,”
J. Propul. Power
,
17
(
4
), pp.
892
901
.10.2514/2.5821
24.
P.
Bader
,
W.
Sanz
, and
R.
Spataro
,
2015
, “
Unsteady CFD Simulation of a Turning Mid Turbine Frame With Embedded Design
,”
ETC Conference
, Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-007
.https://www.euroturbo.eu/publications/proceedingspapers/etc2015-007/
You do not currently have access to this content.