Abstract

The growth of renewable energy source requires reliable, durable, and cheap storage technologies. In this field, the pumped thermal energy storage (PTES) is drawing some interest as it appears not to be affected by geographical limitations and use very cheap materials. PTES is less efficient than pumped hydro and batteries, but it could achieve satisfactory efficiencies, show better economic performance, and be characterized by negligible environmental impacts. A PTES stores the electric energy as thermal exergy in solid packed beds, by operating two closed Brayton cycles, one for charging and the other one for discharging. Although PTES thermodynamical behavior is well understood, the interaction between the components is rarely investigated. This study investigates the impact of packed-bed behavior on turbomachines operating conditions. In this way, PTES off-design and part-load performance are estimated. A control strategy especially suited for closed Brayton cycles, i.e., the inventory control (IC), is used to control the system. As it resulted, PTES is characterized by an excellent part-load performance, which might be a significant advantage over the competing technologies. However, the off-design operation induced by the packed-bed thermal behavior might significantly reduce the system performance and, in particular, that of the discharge phase.

References

1.
Argyrou
,
M. C.
,
Christodoulides
,
P.
, and
Kalogirou
,
S. A.
,
2018
, “
Energy Storage for Electricity Generation and Related Processes: Technologies Appraisal and Grid Scale Applications
,”
Renewable Sustainable Energy Rev.
,
94
, pp.
804
821
.10.1016/j.rser.2018.06.044
2.
Rogner
,
M.
, and
Troja
,
N.
,
2018
, “
The World's Water Battery: Pumped Hydropower Storage and the Clean Energy Transition
,”
IHA Work. Pap.
,
1
, pp.
1
15
.https://ihaproject.webflow.io/publications/the-world-e2-80-99s-water-battery-pumped-hydropower-storageand-the-clean-energy-transition
3.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
, pp.
250
268
.10.1016/j.apenergy.2016.02.108
4.
Dumont
,
O.
,
Frate
,
G. F.
,
Pillai
,
A.
,
Lecompte
,
S.
,
De Paepe
,
M.
, and
Lemort
,
V.
,
2020
, “
Carnot Battery Technology: A State-of-the-Art Review
,”
J. Energy Storage
,
32
, p.
101756
.10.1016/j.est.2020.101756
5.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2021
, “
Energy Storage for Grid-Scale Applications: Technology Review and Economic Feasibility Analysis
,”
Renewable Energy
,
163
, pp.
1754
1772
.10.1016/j.renene.2020.10.070
6.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2020
, “
Rankine Carnot Batteries With the Integration of Thermal Energy Sources : A Review
,”
Energies
,
13
(
18
), p.
4766
.10.3390/en13184766
7.
Benato
,
A.
, and
Stoppato
,
A.
,
2018
, “
Heat Transfer Fluid and Material Selection for an Innovative Pumped Thermal Electricity Storage System
,”
Energy
,
147
, pp.
155
168
.10.1016/j.energy.2018.01.045
8.
Desrues
,
T.
,
Ruer
,
J.
,
Marty
,
P.
, and
Fourmigué
,
J. F.
,
2010
, “
A Thermal Energy Storage Process for Large Scale Electric Applications
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
425
432
.10.1016/j.applthermaleng.2009.10.002
9.
McTigue
,
J. D.
,
Markides
,
C. N.
, and
White
,
A. J.
,
2018
, “
Performance Response of Packed-Bed Thermal Storage to Cycle Duration Perturbations
,”
J. Energy Storage
,
19
, pp.
379
392
.10.1016/j.est.2018.08.016
10.
Li
,
Z.
,
Yang
,
X.
,
Wang
,
J.
, and
Zhang
,
Z.
,
2019
, “
Off-Design Performance and Control Characteristics of Space Reactor Closed Brayton Cycle System
,”
Ann. Nucl. Energy
,
128
, pp.
318
329
.10.1016/j.anucene.2019.01.022
11.
Apte
,
R.
, and
Philippe
,
L.
,
2016
, “
Variable Pressure Inventory Control of Closed Cycle System With a High Pressure Tank and an Intermediate Pressure Tank
,” Patent No. US20200025042A1.
12.
Apte
,
R.
, and
Philippe
,
L.
,
2016
, “
Use of External Air for Closed Cycle Inventory Control
,” Patent No. US10221775B2.
13.
Benato
,
A.
, and
Stoppato
,
A.
,
2018
, “
Energy and Cost Analysis of an Air Cycle Used as Prime Mover of a Thermal Electricity Storage
,”
J. Energy Storage
,
17
, pp.
29
46
.10.1016/j.est.2018.02.007
14.
Georgiou
,
S.
,
Shah
,
N.
, and
Markides
,
C. N.
,
2018
, “
A Thermo-Economic Analysis and Comparison of Pumped-Thermal and Liquid-Air Electricity Storage Systems
,”
Appl. Energy
,
226
, pp.
1119
1133
.10.1016/j.apenergy.2018.04.128
15.
White
,
A.
,
McTigue
,
J.
, and
Markides
,
C.
,
2014
, “
Wave Propagation and Thermodynamic Losses in Packed-Bed Thermal Reservoirs for Energy Storage
,”
Appl. Energy
,
130
, pp.
648
657
.10.1016/j.apenergy.2014.02.071
16.
Ni
,
F.
, and
Caram
,
H. S.
,
2015
, “
Analysis of Pumped Heat Electricity Storage Process Using Exponential Matrix Solutions
,”
Appl. Therm. Eng.
,
84
, pp.
34
44
.10.1016/j.applthermaleng.2015.02.046
17.
Frate
,
G. F.
,
Ferrari
,
L.
,
Giachetti
,
L.
,
Petretto
,
G.
, and
Desideri
,
U.
,
2021
, “
Performance Analysis of a Brayton Pumped Thermal Electricity Storage (PTES) With a Liquid Sensible Heat Storage
,”
E3S Web Conf.
,
238
, p.
10007
.10.1051/e3sconf/202123810007
18.
Esence
,
T.
,
Bruch
,
A.
,
Molina
,
S.
,
Stutz
,
B.
, and
Fourmigué
,
J. F.
,
2017
, “
A Review on Experience Feedback and Numerical Modeling of Packed-Bed Thermal Energy Storage Systems
,”
Sol. Energy
,
153
, pp.
628
654
.10.1016/j.solener.2017.03.032
19.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F.
,
Cohen
,
H.
,
Straznicky
,
P. V.
, and
Nix
,
A. C.
,
2017
,
Gas Turbine Theory
, 7th ed., Pearson, Edinburgh Gate, UK.
You do not currently have access to this content.