Abstract

The main annulus hot gas ingress into turbine wheel-spaces is still one of the most challenging problems designers face. During the decades, several experimental test benches were developed worldwide to improve the knowledge associated with the rim seal flow physics. Even if in some cases quite complex and advanced rig configurations were proposed, limitations in the operating conditions and in the reproduction of the real engine geometries/characteristics into the rig are present. In this paper, validated computational fluid dynamics (CFD) computations are used to explore the impact of some experimental rigs design choices/limitations on the sealing effectiveness prediction and their ability to mimic the real engine configuration behavior. Attention is paid on several test rig-related aspects such as operating conditions, flow path configuration (blade and vane count), and accuracy in the real engine rim seal geometry reconstruction applied to the rig. From the computations, it emerges that a scaled geometry operated at lab conditions is able to mimic pretty well the real engine sealing performance when rig and engine experience the same flow path ΔCp. The ability of the rig to match the engine data is not affected by the differences in main annulus Mach number between test bench and engine. A further result that emerges from the computation regards the fact that the Φ0 − ΔCp0.5 curve is not linear, proving that the linear extrapolation of rim sealing performance from test bench to real engine when rig and engine are characterized by different ΔCp0.5 values is not of general application and an alternative approach is given. Finally, it is found that the impact of vane count on the rim sealing effectiveness is significant, making the extrapolation of data from rig to engine difficult.

References

1.
Zlantinov
,
M.
,
Tan
,
C.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Herris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p. 061027.10.1115/1.4006294
2.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals. Part 1: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p. 021012
.10.1115/1.4006609
3.
Bru Revert
,
A.
,
Beard
,
P.
,
Chew
,
J.
, and
Bottenheim
,
S.
,
2020
, “
Performance of a Turbine Rim Seal Subject to Rotationally-Driven and Pressure-Driven Ingestion
,”
ASME
Paper No. GT2020-14773.10.1115/GT2020-14773
4.
Owen
,
J. M.
, and
Rogers
,
R.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems
, Vol.
1
,
Rotor Stator Systems
,
Taunton, UK
.
5.
Chew
,
J. W.
,
1991
, “
A Theoretical Study of Ingress for Shrouded Rotating Disk Systems With Radial Outflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
91
97
.10.1115/1.2927742
6.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
,
1992
, “
Rim Sealing of Rotor–Stator Wheelspaces in the Absence of External Flow
,”
ASME J. Turbomach.
,
114
(
2
), pp.
433
8
.10.1115/1.2929162
7.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor–Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
45
.10.1115/1.2929163
8.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1983
, “
An Investigation of Ingress for an Air-Cooled Shrouded Rotating-Disk System With Radial-Clearance Seals
,”
ASME J. Eng. Power Trans.
,
105
(
1
), pp.
178
183
.10.1115/1.3227382
9.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.10.1016/0142-727X(88)90060-4
10.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.10.1016/0142-727X(88)90061-6
11.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.10.1016/0142-727X(88)90062-8
12.
Daniels
,
W. A.
,
Johnson
,
B. V.
,
Graber
,
D. J.
, and
Martin
,
R. J.
,
1992
, “
Rim Seal Experiments and Analysis for Turbine Applications
,”
ASME J. Turbomach.
,
114
(
2
), pp.
426
432
.10.1115/1.2929161
13.
Graber
,
D. J.
,
Daniels
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disk Pumping Test
,” Defense Technical Information Center, Fort Belvoir, VA, Report No.
ADA187199
.https://apps.dtic.mil/sti/pdfs/ADA187199.pdf
14.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals. Part 2: Rotationally-Induced Ingress
,”
ASME
Paper No. GT2011-45313.10.1115/GT2011-45313
15.
DaSoghe
,
R.
,
Bianchini
,
C.
,
Sangan
,
C.
,
Scobie
,
J.
, and
Lock
,
G.
,
2017
, “
Numerical Characterization of Hot-Gas Ingestion Through Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032602
.10.1115/1.4034540
16.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2017
, “
Measurements and Modeling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012603
.10.1115/1.4034240
17.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
, 138(12), p. 120801.10.1115/1.4033938
18.
Hamabe
,
K.
, and
Ishida
,
K.
,
1992
, “
Rim Seal Experiments and Analysis of a Rotor-Stator System With Nonaxisymmetric Main Flow
,”
ASME
Paper No. 92-GT-160.10.1115/92-GT-160
19.
Scanlon
,
T. J.
,
Wilkes
,
J.
,
Bohn
,
D.
, and
Gentilhomme
,
O.
,
2004
, “
A Simple Method for Estimating Ingestion of Annulus Gas Into a Turbine Rotor Stator Cavity in the Presence of External Pressure Variations
,”
ASME
Paper No. GT2004-53097.10.1115/GT2004-53097
20.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D.
, and
Cunat
,
D.
,
2006
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME
Paper No. GT2006-90853.10.1115/GT2006-90853
21.
Teuber
,
R.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2012
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng. Part A
,
228
(
2
).10.1177/0957650912466657
22.
Negi
,
A.
,
Mirzamoghadam
,
A.
,
Thangavel
,
B.
, and
Thamke
,
S.
,
2017
, “
Simplified Ingestion Model Assessment for 1D Gas Turbine Engine Secondary Flow Network
,”
ASME
Paper No. GT2017-64388.10.1115/GT2017-64388
23.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
J. Power Energy
,
228
(
5
), pp.
491
507
.10.1177/0957650914527273
24.
Catalfamo
,
P. T.
,
2013
, “
Characterization of Turbine Rim Seal Flow and its Sealing Effectiveness
,” Master thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
25.
Hualca
,
F.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2019
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME
Paper No. GT2019-90987.10.1115/GT2019-90987
26.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D.
,
2018
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
J. Mech. Eng. Sci.
, 233(23–24), pp. 7637–7657.10.1177/0954406218784612
27.
Mear
,
L. I.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Theoretical Model to Determine Effect of Ingress on Turbine Discs
,”
ASME
Paper No. GT2015-42326.10.1115/GT2015-42326
28.
Graikos
,
D.
,
Carnevale
,
M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2021
, “
Influence of Flow Coefficient on Ingress Through Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
, 143(11), p. 111010. 10.1115/GT2021-59227
You do not currently have access to this content.