Abstract

The goal of this work is to investigate the effect of supply pipe position on the heat transfer features of various active clearance control (ACC) geometries, characterized by different jet-to-jet distances. All geometries present 0.8 mm circular impingement holes arranged in a single row. The jets generated by such holes cool a flat target surface, which is replicated by a metal plate in the experimental setup. Measurements are performed using the steady-state technique, obtained by heating up the target plate thanks to an electrically heated Inconel foil applied on the side of the target opposite to the jets. Temperature is also measured on this side by means of an IR camera. Heat transfer is then evaluated thanks to a custom-designed finite difference procedure, capable of solving the inverse conduction problem on the target plate. The effect of pipe positioning is studied in terms of pipe-to-target distance (from 3 to 11 jet diameters) and pipe orientation (i.e., rotation around its axis, from 0 deg to 40 deg with respect to target normal direction), while the investigated jet Reynolds numbers range from 6000 to 10,000. The obtained results reveal that heat transfer is maximized for a given pipe-to-target distance, dependent on both jet-to-jet distance and target surface extension. Pipe rotation also affects the cooling features in a nonmonotonic way, suggesting the existence of different flow regimes related to jet inclination.

References

1.
Arnaldo Valdés
,
R. M.
,
Burmaoglu
,
S.
,
Tucci
,
V.
,
Braga da Costa Campos
,
L. M.
,
Mattera
,
L.
, and
Gomez Comendador
,
V. F.
,
2019
, “
Flight Path 2050 and ACARE Goals for Maintaining and Extending Industrial Leadership in Aviation: A Map of the Aviation Technology Space
,”
Sustainability
,
11
(
7
), p.
2065
.10.3390/su11072065
2.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
4.
Zuckerman
,
N.
, and
Lior
,
N.
, ‘
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling'
,”
Advances in Heat Transfer
,
G. A.
Greene
,
J. P.
Hartnett
,
A.
Bar-Cohen
, and
Y. I.
Cho
, eds., Vol.
39
,
Elsevier
, Amsterdam, The Netherlands, pp.
565
631
.
5.
Soghe
,
R. D.
, and
Andreini
,
A.
,
2013
, “
Numerical Characterization of Pressure Drop Across the Manifold of Turbine Casing Cooling System
,”
ASME J. Turbomach.
,
135
(
3
), p. 031017.10.1115/1.4007506
6.
Andreini
,
A.
, and
Soghe
,
R. D.
,
2012
, “
Numerical Characterization of Aerodynamic Losses of Jet Arrays for Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), pp.
921
929
.10.1115/GT2011-46212
7.
Goldstein
,
R.
, and
Seol
,
W.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
–21
47
.10.1016/0017-9310(91)90223-2
8.
Ben Ahmed
,
F.
,
Weigand
,
B.
, and
Meier
,
K.
,
2011
, “
Heat Transfer and Pressure Drop Characteristics for a Turbine Casing Impingement Cooling System
,”
ASME
Paper No. IHTC14-22817.10.1115/IHTC14-22817
9.
Ben Ahmed
,
F.
,
Tucholke
,
R.
,
Weigand
,
B.
, and
Meier
,
K.
,
2012
, “
Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System
,”
ASME
Paper No. GT2011-45251.
10.1115/GT2011-45251
10.
Ben Ahmed
,
F.
,
Poser
,
R.
,
Schumann
,
Y.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Meier
,
K.
,
2012
, “
A Numerical and Experimental Investigation of an Impingement Cooling System for an Active Clearance Control System of a Low Pressure Turbine
,”
ISROMAC 2012—14th International Symposium Transportation Phenomenon Dynamic Rotating Machine
, Honolulu, HI, Feb. 27–Mar. 2.https://www.researchgate.net/publication/287016234_A_numerical_and_experimental_investigation_of_an_impingement_cooling_system_for_an_Active_Clearance_Control_system_of_a_low_pressure_turbine
11.
Marzec
,
K.
, and
Kucaba-Pietal
,
A.
,
2014
, “
Heat Transfer Characteristics of an Impingement Cooling System With Different Nozzle Geometry
,”
J. Phys. Conf. Series
, 530, p. 012038.10.1088/1742-6596/530/1/012038
12.
Choi
,
M.
,
Dyrda
,
D. M.
,
Gillespie
,
D. R. H.
,
Tapanlis
,
O.
, and
Lewis
,
L. V.
,
2016
, “
The Relative Performance of External Casing Impingement Cooling Arrangements for Thermal Control of Blade Tip Clearance
,”
ASME J. Turbomach.
,
138
(
3
), p.
031005
.10.1115/1.4031907
13.
Liu
,
F.
,
Mao
,
J.
,
Han
,
X.
, and
Gu
,
W.
,
2018
, “
Heat Transfer of Impinging Jet Arrays on a Ribbed Surface
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
669
679
.10.2514/1.T5288
14.
Liu
,
F.
,
Mao
,
J.
,
Han
,
C.
,
Liu
,
Y.
,
Han
,
X.
, and
Liang
,
F.
,
2019
, “
Study of a Cooling Feed Pipe With a Covering Plate on a Ribbed Turbine Case
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071024
.10.1115/1.4043445
15.
Andreini
,
A.
,
DaSoghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2013
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031016
.10.1115/1.4007481
16.
Da Soghe
,
R.
, and
Bianchini
,
C.
,
2019
, “
Aero-Thermal Investigation of Convective and Radiative Heat Transfer on Active Clearance Control Manifolds
,”
ASME
Paper No. GT2019-90007.10.1115/GT2019-90007
17.
Soghe
,
R. D.
,
Bianchini
,
C.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Mazzei
,
L.
,
2016
, “
Heat Transfer Augmentation Due to Coolant Extraction on the Cold Side of Active Clearance Control Manifolds
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021507
.10.1115/1.4031383
18.
Sparrow
,
E. M.
, and
Lovell
,
B. J.
,
1980
, “
Heat Transfer Characteristics of an Obliquely Impinging Circular Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
102
(
2
), pp.
202
209
.10.1115/1.3244261
19.
Goldstein
,
R. J.
, and
Franchett
,
M. E.
,
1988
, “
Heat Transfer From a Flat Surface to an Oblique Impinging Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
1
), pp.
84
90
.10.1115/1.3250477
20.
Yan
,
X.
, and
Saniei
,
N.
,
1997
, “
Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate
,”
Int. J. Heat Fluid Flow
,
18
(
6
), pp.
591
599
.10.1016/S0142-727X(97)00051-9
21.
Da Soghe
,
R.
, Mazzei, L., Tarchi, L., Cocchi, L, Picchi, A., Facchini, B., Descamps, L., Girardeau, J., and Simon, M.,
2020
, “
Development of Experimental and Numerical Methods for the Analysis of Active Clearance Control Systems
,”
ASME J. Eng. Gas Turbines Power
, 143(2), p. 021018.10.1115/1.4049354
22.
Bouchez
,
J.-P.
, and
Goldstein
,
R. J.
,
1975
, “
Impingement Cooling From a Circular Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
719
730
.10.1016/0017-9310(75)90201-X
23.
Attalla
,
M.
, and
Specht
,
E.
,
2009
, “
Heat Transfer Characteristics From in-Line Arrays of Free Impinging Jets
,”
Heat Mass Transfer
,
45
(
5
), pp.
537
543
.10.1007/s00231-008-0452-y
24.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
367
380
.10.1016/j.ijheatmasstransfer.2006.06.007
25.
Fenot
,
M.
,
Vullierme
,
J.-J.
, and
Dorignac
,
E.
,
2005
, “
Local Heat Transfer Due to Several Configurations of Circular Air Jets Impinging on a Flat Plate With and Without Semi-Confinement
,”
Int. J. Therm. Sci.
,
44
(
7
), pp.
665
675
.10.1016/j.ijthermalsci.2004.12.002
26.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
27.
Bozzoli
,
F.
,
Cattani
,
L.
,
Rainieri
,
S.
,
Viloche Bazán
,
F. S.
, and
Borges
,
L. S.
,
2014
, “
Estimation of the Local Heat-Transfer Coefficient in the Laminar Flow Regime in Coiled Tubes by the Tikhonov Regularisation Method
,”
Int. J. Heat Mass Transfer
,
72
, pp.
352
361
.10.1016/j.ijheatmasstransfer.2014.01.019
28.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
,
Wiley,
Hoboken, NJ.
29.
ASME,
1985
, “
Measurement Uncertainty
,”
Instrum. Appar.
, Vol. ANSI/ASME PTC 19.1-1985 of Performance Test Code, ASME, New York.
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.https://www.semanticscholar.org/paper/Describing-Uncertainties-in-Single-Sample-Kline/103c78eb0cc0ca21a542aa20ca6f232b023e178a
31.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
.10.1016/0017-9310(86)90155-9
You do not currently have access to this content.