Abstract

In this work, the growth regime of combustion instability was studied by analyzing 10 kHz OH planar laser-induced fluorescence (PLIF) images through a combination of dynamic mode decomposition (DMD) and spectral proper orthogonal decomposition (SPOD) methods. Combustion instabilities were induced in a mesoscale burner array through an external speaker at an imposed perturbation frequency of 210 Hz. During the transient growth phase of combustion instability, 10 kHz OH PLIF imaging was employed to capture spatially and temporally resolved flame dynamics. Increased acoustic perturbations prevented flame reignition in the central recirculation zone and eventually led to the flame being extinguished inward from the outer burner array elements. Coherent modes and their growth rates were obtained from DMD spectral analyses of high-speed OH PLIF images. Positive growth rates were observed at the forcing frequency during the growth regime. Coherent structures, closely associated with thermoacoustic instability, were extracted using an appropriate SPOD filter operation to identify mode structures that correlate to physical phenomena such as shear layer instability and flame response to longitudinal acoustic forcing. Overall, a combination of DMD and SPOD was shown to be effective at analyzing the onset and propagation of combustion instabilities, particularly under transient burner operations.

References

1.
Lee
,
J.
, and
Santavicca
,
D.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.10.2514/2.6191
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2006
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
3.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
Cinematographic OH-PLIF Measurements of Two Interacting Turbulent Premixed Flames With and Without Acoustic Forcing
,”
Combust. Flame
,
159
(
3
), pp.
1109
1126
.10.1016/j.combustflame.2011.09.006
4.
Sung
,
C.
, and
Law
,
C. K.
,
2000
, “
Structural Sensitivity, Response, and Extinction of Diffusion and Premixed Flames in Oscillating Counterflow
,”
Combust. Flame
,
123
(
3
), pp.
375
388
.10.1016/S0010-2180(00)00175-9
5.
Chaparro
,
A. A.
, and
Cetegen
,
B. M.
,
2006
, “
Blowoff Characteristics of Bluff-Body Stabilized Conical Premixed Flames Under Upstream Velocity Modulation
,”
Combust. Flame
,
144
(
1–2
), pp.
318
335
.10.1016/j.combustflame.2005.08.024
6.
Sun
,
P.
,
Yuan
,
Y.
,
Ge
,
B.
,
Tian
,
Y.
,
Zhang
,
Z.
, and
Zang
,
S.
,
2017
, “
Combustion Oscillation Characteristics and Flame Structures in a Lean Premixed Prevaporized Combustor
,”
Energy Fuels
,
31
(
9
), pp.
10060
10067
.10.1021/acs.energyfuels.7b01302
7.
Evans
,
C. J.
, and
Kyritsis
,
D. C.
,
2009
, “
Operational Regimes of Rich Methane and Propane/Oxygen Flames in Mesoscale Non-Adiabatic Ducts
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3107
3114
.10.1016/j.proci.2008.06.089
8.
Maruta
,
K.
,
Kataoka
,
T.
,
Kim
,
N. I.
,
Minaev
,
S.
, and
Fursenko
,
R.
,
2005
, “
Characteristics of Combustion in a Narrow Channel With a Temperature Gradient
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2429
2436
.10.1016/j.proci.2004.08.245
9.
Maruta
,
K.
,
Parc
,
J.
,
Oh
,
K.
,
Fujimori
,
T.
,
Minaev
,
S.
, and
Fursenko
,
R.
,
2004
, “
Characteristics of Microscale Combustion in a Narrow Heated Channel
,”
Combust., Explos., Shock Waves
,
40
(
5
), pp.
516
523
.10.1023/B:CESW.0000041403.16095.a8
10.
Lang
,
W.
,
Poinsot
,
T.
, and
Candel
,
S.
,
1987
, “
Active Control of Combustion Instability
,”
Combust. Flame
,
70
(
3
), pp.
281
289
.10.1016/0010-2180(87)90109-X
11.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
12.
Rashwan
,
S. S.
,
Mohany
,
A.
, and
Dincer
,
I.
,
2020
, “
Investigation of Self-Induced Thermoacoustic Instabilities in Gas Turbine Combustors
,”
Energy
,
190
, p.
116362
.10.1016/j.energy.2019.116362
13.
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study
,”
Energy Fuels
,
30
(
12
), pp.
9981
10014
.10.1021/acs.energyfuels.6b02386
14.
Kabiraj
,
L.
,
Sujith
,
R.
, and
Wahi
,
P.
,
2012
, “
Investigating the Dynamics of Combustion-Driven Oscillations Leading to Lean Blowout
,”
Fluid Dyn. Res.
,
44
(
3
), p.
031408
.10.1088/0169-5983/44/3/031408
15.
Kabiraj
,
L.
, and
Sujith
,
R.
,
2012
, “
Nonlinear Self-Excited Thermoacoustic Oscillations: Intermittency and Flame Blowout
,”
J. Fluid Mech.
,
713
(
376–397
), pp.
376
397
.10.1017/jfm.2012.463
16.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
17.
Stöhr
,
M.
,
Oberleithner
,
K.
,
Sieber
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2018
, “
Experimental Study of Transient Mechanisms of Bistable Flame Shape Transitions in a Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p. 011503.10.1115/1.4037724
18.
Maurice
,
G.
,
Thiesset
,
F.
,
Halter
,
F.
,
Mazellier
,
N.
,
Chauveau
,
C.
,
Gökalp
,
I.
, and
Kourta
,
A.
,
2016
, “
Scale Analysis of the Flame Front in Premixed Combustion Using Proper Orthogonal Decomposition
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
109
114
.10.1016/j.expthermflusci.2015.09.030
19.
Wu
,
Z.
,
Laurence
,
D.
,
Utyuzhnikov
,
S.
, and
Afgan
,
I.
,
2019
, “
Proper Orthogonal Decomposition and Dynamic Mode Decomposition of Jet in Channel Crossflow
,”
Nucl. Eng. Des.
,
344
, pp.
54
68
.10.1016/j.nucengdes.2019.01.015
20.
Rajasegar
,
R.
,
Mitsingas
,
C. M.
,
Mayhew
,
E. K.
,
Liu
,
Q.
,
Lee
,
T.
, and
Yoo
,
J.
,
2018
, “
Development and Characterization of Additive-Manufactured Mesoscale Combustor Array
,”
J. Energy Eng.
,
144
(
3
), p.
04018013
.10.1061/(ASCE)EY.1943-7897.0000527
21.
Huang
,
C.
,
Anderson
,
W. E.
,
Harvazinski
,
M. E.
, and
Sankaran
,
V.
,
2016
, “
Analysis of Self-Excited Combustion Instabilities Using Decomposition Techniques
,”
AIAA J.
,
54
(
9
), pp.
2791
2807
.10.2514/1.J054557
22.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
23.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
24.
Rajasegar
,
R.
,
Choi
,
J.
,
Ghanekar
,
S.
,
Mitsingas
,
C. M.
,
Mayhew
,
E.
,
Liu
,
Q.
,
Yoo
,
J.
, and
Lee
,
T.
,
2018
, “
Extended Proper Orthogonal Decomposition (EPOD) and Dynamic Mode Decomposition (DMD) for Analysis of Mesoscale Burner Array Flame Dynamics
,”
AIAA
Paper No. 2018-0147.10.2514/6.2018-0147
25.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
, pp.
798
828
.10.1017/jfm.2016.103
26.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2017
, “
Advanced Identification of Coherent Structures in Swirl-Stabilized Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021503
.10.1115/1.4034261
27.
Lee
,
S.
,
Svrcek
,
M.
,
Edwards
,
C.
, and
Bowman
,
C.
,
2006
, “
Mesoscale Burner Arrays for Gas-Turbine Reheat Applications
,”
J. Propul. Power
,
22
(
2
), pp.
417
424
.10.2514/1.15667
28.
Choi
,
J.
,
Rajasegar
,
R.
,
Mitsingas
,
C. M.
,
Liu
,
Q.
,
Lee
,
T.
, and
Yoo
,
J.
,
2020
, “
Effect of Flame Interaction on Swirl-Stabilized Mesoscale Burner Array Performance
,”
Energy
,
192
, p.
116661
.10.1016/j.energy.2019.116661
29.
Choi
,
J.
,
Rajasegar
,
R.
,
Lee
,
T.
, and
Yoo
,
J.
,
2020
, “
Development and Characterization of Swirl-Stabilized Diffusion Mesoscale Burner Array
,”
Appl. Therm. Eng.
,
175
, p.
115373
.10.1016/j.applthermaleng.2020.115373
30.
Taylor
,
G. I.
, and
Green
,
A. E.
,
1937
, “
Mechanism of the Production of Small Eddies From Large Ones
,”
Proc. R. Soc. London. Ser. A Math. Phys. Sci.
,
158
(
895
), pp.
499
521
.https://www.ams.jhu.edu/~eyink/Turbulence/classics/TaylorGreen37.pdf
31.
Schmid
,
P. J.
,
Li
,
L.
,
Juniper
,
M. P.
, and
Pust
,
O.
,
2011
, “
Applications of the Dynamic Mode Decomposition
,”
Theor. Comput. Fluid Dyn.
,
25
(
1–4
), pp.
249
259
.10.1007/s00162-010-0203-9
32.
Greenbaum
,
A.
,
1997
,
Iterative Methods for Solving Linear Systems
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA
.
33.
Chen
,
K. K.
,
Tu
,
J. H.
, and
Rowley
,
C. W.
,
2012
, “
Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
,”
J. Nonlinear Sci.
,
22
(
6
), pp.
887
915
.10.1007/s00332-012-9130-9
34.
Rajasegar
,
R.
,
Choi
,
J.
,
McGann
,
B.
,
Oldani
,
A.
,
Lee
,
T.
,
Hammack
,
S. D.
,
Carter
,
C. D.
, and
Yoo
,
J.
,
2019
, “
Mesoscale Burner Array Performance Analysis
,”
Combust. Flame
,
199
, pp.
324
337
.10.1016/j.combustflame.2018.10.020
35.
Sun
,
Y.
,
Zhao
,
D.
,
Ni
,
S.
,
David
,
T.
, and
Zhang
,
Y.
,
2020
, “
Entropy and Flame Transfer Function Analysis of a Hydrogen-Fueled Diffusion Flame in a Longitudinal Combustor
,”
Energy
,
194
, p.
116870
.10.1016/j.energy.2019.116870
36.
Cavaliere
,
D. E.
,
Kariuki
,
J.
, and
Mastorakos
,
E.
,
2013
, “
A Comparison of the Blow-Off Behaviour of Swirl-Stabilized Premixed, Non-Premixed and Spray Flames
,”
Flow, Turbul. Combust.
,
91
(
2
), pp.
347
372
.10.1007/s10494-013-9470-z
37.
Fooladgar
,
E.
, and
Chan
,
C.
,
2017
, “
Effects of Stratification on Flame Structure and Pollutants of a Swirl Stabilized Premixed Combustor
,”
Appl. Therm. Eng.
,
124
, pp.
45
61
.10.1016/j.applthermaleng.2017.05.197
38.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
(
4
), pp.
790
802
.10.1016/j.combustflame.2009.10.020
39.
Broda
,
J.
,
Seo
,
S.
,
Santoro
,
R.
,
Shirhattikar
,
G.
, and
Yang
,
V.
,
1998
, “
An Experimental Study of Combustion Dynamics of a Premixed Swirl Injector
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1849
1856
.10.1016/S0082-0784(98)80027-1
40.
Therkelsen
,
P. L.
,
Portillo
,
J. E.
,
Littlejohn
,
D.
,
Martin
,
S. M.
, and
Cheng
,
R. K.
,
2013
, “
Self-Induced Unstable Behaviors of CH4 and H2/CH4 Flames in a Model Combustor With a Low-Swirl Injector
,”
Combust. Flame
,
160
(
2
), pp.
307
321
.10.1016/j.combustflame.2011.11.008
41.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Lin
,
Y.
,
Zhang
,
C.
,
Hui
,
X.
, and
Sung
,
C.-J.
,
2019
, “
Inlet Temperature Driven Supercritical Bifurcation of Combustion Instabilities in a Lean Premixed Prevaporized Combustor
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109857
.10.1016/j.expthermflusci.2019.109857
42.
Liu
,
Y.
,
Tan
,
J.
,
Wang
,
H.
, and
Lv
,
L.
,
2019
, “
Characterization of Heat Release Rate by OH* and CH* Chemiluminescence
,”
Acta Astronaut.
,
154
, pp.
44
51
.10.1016/j.actaastro.2018.10.022
43.
Panoutsos
,
C.
,
Hardalupas
,
Y.
, and
Taylor
,
A.
,
2009
, “
Numerical Evaluation of Equivalence Ratio Measurement Using OH∗ and CH∗ Chemiluminescence in Premixed and Non-Premixed Methane–Air Flames
,”
Combust. Flame
,
156
(
2
), pp.
273
291
.10.1016/j.combustflame.2008.11.008
44.
Hardalupas
,
Y.
,
Panoutsos
,
C.
, and
Taylor
,
A.
,
2010
, “
Spatial Resolution of a Chemiluminescence Sensor for Local Heat-Release Rate and Equivalence Ratio Measurements in a Model Gas Turbine Combustor
,”
Exp. Fluids
,
49
(
4
), pp.
883
909
.10.1007/s00348-010-0915-z
45.
Rajasegar
,
R.
,
Choi
,
J.
,
McGann
,
B.
,
Oldani
,
A.
,
Lee
,
T.
,
Hammack
,
S. D.
,
Carter
,
C. D.
, and
Yoo
,
J.
,
2018
, “
Comprehensive Combustion Stability Analysis Using Dynamic Mode Decomposition
,”
Energy Fuels
,
32
(
9
), pp.
9990
9996
.10.1021/acs.energyfuels.8b02433
46.
Jeong
,
C.
,
Shin
,
J.
,
Hwang
,
J.
,
Yoon
,
J.
, and
Yoon
,
Y.
,
2016
, “
Effect of Acoustic Excitation on Lean Blowoff in Turbulent Premixed Bluff Body Flames
,”
Combust. Sci. Technol.
,
188
(
1
), pp.
55
76
.10.1080/00102202.2015.1079524
You do not currently have access to this content.