Abstract

Rotating stall is an important unstable flow phenomenon that leads to performance degradation and limits the stability boundary in centrifugal compressors. The volute is one of the sources inducing nonaxisymmetric flows in centrifugal compressors, which has an important effect on compressors' aerodynamic performance. However, the influence of volute on rotating stall is not clear. Therefore, the effects of volute on rotating stall behavior have been explored in this paper by experiments and numerical simulations. The frequency of the rotating stall captured by the experiments is 43.9% of the impeller passing frequency (IPF), while it is 44.7% of IPF calculated from the numerical results, which proves the accuracy and capability of the numerical method in this work to study the rotating stall behavior. The flow fields from computational fluid dynamics (CFD) simulations further reveal that one stall cell initializing in a particular location deforms into several stall cells while rotating along the circumferential direction and becomes much smaller in a specific location during the evolution process, and finally, it is suppressed in another specific location as a result of the distorted flow field caused by the volute. Moreover, stall cells' behavior, including shrinking and enlarging along the spanwise direction during rotation, is closely related to the circumferentially nonaxisymmetric pressure distribution caused by the volute. The existence of volute makes rotating stall incept in the flow rate 32% larger than that of the centrifugal compressor without volute. By optimizing volute geometry to reduce the distortion of the flow field, it is expected that the rotating stall can be weakened or suppressed, which is helpful to extend the stable operating range of centrifugal compressors.

References

1.
Frigne
,
P.
, and
Van Den Braembussche
,
R.
,
1984
, “
Distinction Between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor With Vaneless Diffuser
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
468
474
.10.1115/1.3239589
2.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
3.
Jansen
,
W.
,
1964
, “
Rotating Stall in a Radial Vaneless Diffuser
,”
ASME J. Fluids Eng.
,
86
(
4
), pp.
750
758
.10.1115/1.3655945
4.
Frigne
,
P.
, and
Van Den Braembussche
,
R.
,
1985
, “
A Theoretical Model for Rotating Stall in the Vaneless Diffuser of a Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
507
513
.10.1115/1.3239760
5.
Kobayashi
,
H.
,
Nishida
,
H.
,
Takagi
,
T.
, and
Fukushima
,
Y.
,
1990
, “
A Study on the Rotating Stall of Centrifugal Compressors. II-Effect of Vaneless Diffuser Inlet Shape on Rotating Stall
,”
Jpn. Soc. Mech. Eng. Trans. B
,
56
(
529
), pp.
2646
2651
.10.1299/kikaib.56.2646
6.
Jaatinen
,
A.
,
Grönman
,
A.
,
Turunen-Saaresti
,
T.
, and
Röyttä
,
P.
,
2011
, “
Effect of Vaneless Diffuser Width on the Overall Performance of a Centrifugal Compressor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
225
(
5
), pp.
665
673
.10.1177/0957650911399828
7.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2004
, “
Rotating Stall in Centrifugal Compressor Vaneless Diffuser: Experimental Analysis of Geometrical Parameters Influence on Phenomenon Evolution
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
433
442
.10.1155/S1023621X04000430
8.
Feng
,
J.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2009
, “Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD,”
J. Vis.
, 12(
1
), pp.
65
72
.10.1007/BF03181944
9.
Dazin
,
A.
,
Cavazzini
,
G.
,
Pavesi
,
G.
,
Dupont
,
P.
,
Coudert
,
S.
,
Ardizzon
,
G.
,
Caignaert
,
G.
, and
Bois
,
G.
,
2011
, “
High-Speed Stereoscopic PIV Study of Rotating Instabilities in a Radial Vaneless Diffuser
,”
Exp. Fluids
,
51
(
1
), pp.
83
93
.10.1007/s00348-010-1030-x
10.
Ohuchida
,
S.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2013
, “
Experimental Study of Rotating Stall in Vaneless Diffuser of a Centrifugal Compressor
,”
ASME
Paper No. GT2013-95468.10.1115/GT2013-95468
11.
Ljevar
,
S.
,
De Lange
,
H.
, and
Van Steenhoven
,
A.
,
2006
, “
Two-Dimensional Rotating Stall Analysis in a Wide Vaneless Diffuser
,”
Int. J. Rotating Mach.
,
2006
, pp.
1
11
.10.1155/IJRM/2006/56420
12.
Ljevar
,
S.
,
De Lange
,
H.
, and
Van Steenhoven
,
A.
,
2005
, “
Rotating Stall Characteristics in a Wide Vaneless Diffuser
,”
ASME
Paper No. GT2005-68445.10.1115/GT2005-68445
13.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2013
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.10.1115/1.4006533
14.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Roumeas
,
M.
, and
Trebinjac
,
I.
,
2016
, “
Numerical Simulation of Stall Inception Mechanisms in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
138
(
12
), p.
121005
.10.1115/1.4033704
15.
Vagani
,
M.
,
Engeda
,
A.
, and
Cave
,
M. J.
,
2013
, “
Prediction of Impeller Rotating Stall Onset Using Numerical Simulations of a Centrifugal Compressor. Part I: Detection of Rotating Stall Using Fixed-Flow Transient Simulations
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
227
(
4
), pp.
403
414
.10.1177/0957650912474386
16.
Grapow
,
F.
, and
Liśkiewicz
,
G.
,
2018
, “
Three-Dimensional Vaneless Diffuser Rotating Stall Numerical Study
,”
ASME
Paper No. GT2018-76716.10.1115/GT2018-76716
17.
Zhao
,
Y.
,
Zhao
,
J.
,
Wang
,
Z.
, and
Xi
,
G.
,
2017
, “
Numerical Investigation of Diffuser Flow Field and Rotating Stall in a Centrifugal Compressor With Vaned Diffuser
,”
ASME
Paper No. GT2017-63913.10.1115/GT2017-63913
18.
Fujisawa
,
N.
, and
Ohta
,
Y.
,
2017
, “
Transition Process From Diffuser Stall to Stage Stall in a Centrifugal Compressor With a Vaned Diffuser
,”
Int. J. Rotating Mach.
,
2017
, pp.
1
13
.10.1155/2017/2861257
19.
Ohta
,
Y.
, and
Fujisawa
,
N.
,
2014
, “
Unsteady Behavior and Control of Vortices in Centrifugal Compressor
,”
J. Therm. Sci.
,
23
(
5
), pp.
401
411
.10.1007/s11630-014-0723-5
20.
Fujisawa
,
N.
,
Hara
,
S.
, and
Ohta
,
Y.
,
2016
, “
Unsteady Behavior of Leading-Edge Vortex and Diffuser Stall in a Centrifugal Compressor With Vaned Diffuser
,”
J. Therm. Sci.
,
25
(
1
), pp.
13
21
.10.1007/s11630-016-0829-z
21.
Fujisawa
,
N.
,
Inui
,
T.
, and
Ohta
,
Y.
,
2019
, “
Evolution Process of Diffuser Stall in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
141
(
4
), p.
041009
.10.1115/1.4042249
22.
Zheng
,
X.
,
Lin
,
Y.
, and
Sun
,
Z.
,
2018
, “
Effects of Volute's Asymmetry on the Performance of a Turbocharger Centrifugal Compressor
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
232
(
7
), pp.
1235
1246
.10.1177/0954410016670418
23.
Zheng
,
X.
,
Sun
,
Z.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2018
, “
Stability Improvement of a Turbocharger Centrifugal Compressor by a Non-Axisymmetric Vaned Diffuser
,”
ASME J. Turbomach.
,
140
(
4
), p.
041007
.10.1115/1.4038875
24.
Sun
,
Z.
,
Zheng
,
X.
,
Linghu
,
Z.
,
Kawakubo
,
T.
,
Tamaki
,
H.
, and
Wang
,
B.
,
2019
, “
Influence of Volute Design on Flow Field Distortion and Flow Stability of Turbocharger Centrifugal Compressors
,”
Proc. Inst. Mech. Eng. Part D J. Autom. Eng.
,
233
(
3
), pp.
484
494
.10.1177/0954407017746281
25.
Zhang
,
M.
, and
Zheng
,
X.
,
2018
, “
Criteria for the Matching of Inlet and Outlet Distortions in Centrifugal Compressors
,”
Appl. Therm. Eng.
,
131
, pp.
933
946
.10.1016/j.applthermaleng.2017.11.140
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
27.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.10.1115/1.1861912
28.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
29.
He
,
X.
, and
Zheng
,
X.
,
2018
, “
Flow Instability Evolution in High Pressure Ratio Centrifugal Compressor With Vaned Diffuser
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
719
730
.10.1016/j.expthermflusci.2018.06.023
30.
Zou
,
W.
,
He
,
X.
,
Zhang
,
W.
,
Niu
,
Z.
, and
Zheng
,
X.
,
2019
, “
Roles of Vanes in Diffuser on Stability of Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part G J. Aerosp. Eng.
,
233
(
14
), pp.
5380
5392
.10.1177/0954410019844433
31.
Zheng
,
X.
,
Jin
,
L.
, and
Tamaki
,
H.
,
2014
, “
Influence of Volute-Induced Distortion on the Performance of a High-Pressure-Ratio Centrifugal Compressor With a Vaneless Diffuser for Turbocharger Applications
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
228
(
4
), pp.
440
450
.10.1177/0957650913519984
32.
Zheng
,
X.
,
Jin
,
L.
, and
Tamaki
,
H.
,
2013
, “
Influence of Volute Distortion on the Performance of Turbocharger Centrifugal Compressor With Vane Diffuser
,”
Sci. China Technol. Sci.
,
56
(
11
), pp.
2778
2786
.10.1007/s11431-013-5326-y
You do not currently have access to this content.