Abstract

One promising pathway for carbon capture and utilization is represented by the coupling of chemical looping cycles with liquid fuel synthesis processes. Methanol is an interesting fuel for gas turbines engines, due to its potential reduction of NOX and particulate emissions along with the absence of SO2 emissions. In this work, methanol production from the syngas generated by a three-reactors chemical looping process is investigated by mass and energy balances. The cycle is composed by a reducer reactor, where Fe2O3 is reduced to FeO by the injection of a reducing agent; an oxidizer reactor, where FeO reacts with CO2 and H2O to produce a syngas; an air reactor, where Fe3O4 is regenerated to Fe2O3 by ambient air. The produced syngas is then sent to a methanol synthesis plant. Several syngas compositions deriving from different CO2/(H2O+ CO2) molar fractions (1–3) at the oxidizer inlet are taken into account. The resulting methanol flow rates are almost equal in all investigated configurations (about0.35 t/h). From an energy standpoint, the required electric power is greater for higher hydrogen mole fractions in the syngas. However, the case with 75% H2 content is characterized by the greatest methanol yield (12.6%), carbon efficiency (23%) and a high feed/recirculation ratio (0.80), thus representing the most indicated configuration among the investigated ones. Finally, by burning methanol in a gas turbine, the total CO2 emissions are halved with respect to the case without the system (if the CO2 associated with biogenic carbon in the reducer reactor is considered as net-zero).

References

1.
Paris Agreement
,
2015
, United Nations Treaty Collection, Paris, Dec., pp.
1
27
.
2.
Ramírez-Santos
,
Á. A.
,
Castel
,
C.
, and
Favre
,
E.
,
2018
, “
A Review of Gas Separation Technologies Within Emission Reduction Programs in the Iron and Steel Sector: Current Application and Development Perspectives
,”
Sep. Purif. Technol.
,
194
, pp.
425
442
.10.1016/j.seppur.2017.11.063
3.
Wu
,
H.
,
Li
,
Q.
,
Sheng
,
M.
,
Wang
,
Z.
,
Zhao
,
S.
,
Wang
,
J.
,
Mao
,
S.
,
Wang
,
D.
,
Guo
,
B.
,
Ye
,
N.
,
Kang
,
G.
,
Li
,
M.
, and
Cao
,
Y.
,
2021
, “
Membrane Technology for CO2 Capture: From Pilot-Scale Investigation of Two-Stage Plant to Actual System Design
,”
J. Membr. Sci.
,
624
, p.
119137
.10.1016/j.memsci.2021.119137
4.
Blamey
,
J.
,
Anthony
,
E. J.
,
Wang
,
J.
, and
Fennell
,
P. S.
,
2010
, “
The Calcium Looping Cycle for Large-Scale CO2 Capture
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
260
279
.10.1016/j.pecs.2009.10.001
5.
De Silvestri
,
A.
,
Stendardo
,
S.
,
Della Pietra
,
M.
, and
Borello
,
D.
,
2021
, “
Decarbonizing Cement Plants Via a Fully Integrated Calcium Looping-Molten Carbonate Fuel Cell Process: Assessment of a Model for Fuel Cell Performance Predictions Under Different Operating Conditions
,”
Int. J. Hydrogen Energy
,
46
(
28
), pp.
14988
15007
.10.1016/j.ijhydene.2020.12.024
6.
Kodama
,
T.
, and
Gokon
,
N.
,
2007
, “
Thermochemical Cycles for High-Temperature Solar Hydrogen Production
,”
Chem. Rev.
,
107
(
10
), pp.
4048
4077
.10.1021/cr050188a
7.
Tou
,
M.
,
Michalsky
,
R.
, and
Steinfeld
,
A.
,
2017
, “
Solar-Driven Thermochemical Splitting of CO2 and in Situ Separation of CO and O2 Across a Ceria Redox Membrane Reactor
,”
Joule
,
1
(
1
), pp.
146
154
.10.1016/j.joule.2017.07.015
8.
Yu
,
Z.
,
Yang
,
Y.
,
Yang
,
S.
,
Zhang
,
Q.
,
Zhao
,
J.
,
Fang
,
Y.
,
Hao
,
X.
, and
Guan
,
G.
,
2019
, “
Iron-Based Oxygen Carriers in Chemical Looping Conversions: A Review
,”
Carbon Resour. Convers.
,
2
(
1
), pp.
23
34
.10.1016/j.crcon.2018.11.004
9.
McGlashan
,
N. R.
,
Childs
,
P.
,
Heyes
,
A. L.
, and
Marquis
,
A. J.
,
2010
, “
Producing Hydrogen and Power Using Chemical Looping Combustion and Water-Gas Shift
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
031401
.10.1115/1.3159371
10.
Ince
,
A. C.
,
Colpan
,
C. O.
,
Hagen
,
A.
, and
Serincan
,
M. F.
,
2021
, “
Modeling and Simulation of Power-to-X Systems: A Review
,”
Fuel
,
304
, p.
121354
.10.1016/j.fuel.2021.121354
11.
Marchese
,
M.
,
Buffo
,
G.
,
Santarelli
,
M.
, and
Lanzini
,
A.
,
2021
, “
CO2 From Direct Air Capture as Carbon Feedstock for Fischer-Tropsch Chemicals and Fuels: Energy and Economic Analysis
,”
J. CO2 Util.
,
46
, p.
101487
.10.1016/j.jcou.2021.101487
12.
Tola
,
V.
, and
Lonis
,
F.
,
2021
, “
Low CO2 Emissions Chemically Recuperated Gas Turbines Fed by Renewable Methanol
,”
Appl. Energy
,
298
, p.
117146
.10.1016/j.apenergy.2021.117146
13.
Chudnovsky
,
B.
,
2021
, “
Methanol as a Low-Cost Alternative Fuel for the Reduction of Emissions
,”
Methanol
,
Springer
,
Singapore
, pp.
37
83
.
14.
Agarwal
,
A. K.
,
Valera
,
H.
,
Pexa
,
M.
, and
Čedík
,
J.
, eds.,
2021
,
Methanol: A Sustainable Transport Fuel for CI Engines
,
Springer, Singapore.
15.
Jin
,
H.
,
Zhang
,
X.
,
Hong
,
H.
, and
Han
,
W.
,
2009
, “
An Innovative Gas Turbine Cycle With Methanol-Fueled Chemical-Looping Combustion
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
061701
.10.1115/1.3098418
16.
Din
,
I. U.
,
Shaharun
,
M. S.
,
Alotaibi
,
M. A.
,
Alharthi
,
A. I.
, and
Naeem
,
A.
,
2019
, “
Recent Developments on Heterogeneous Catalytic CO2 Reduction to Methanol
,”
J. CO2 Util.
,
34
, pp.
20
33
.10.1016/j.jcou.2019.05.036
17.
Moulijn
,
J. A.
,
Makkee
,
M.
, and
Van Diepen
,
A. E.
,
2013
,
Chemical Process Technology
,
John Wiley & Sons, Inc., New York.
18.
Battaglia
,
P.
,
Buffo
,
G.
,
Ferrero
,
D.
,
Santarelli
,
M.
, and
Lanzini
,
A.
,
2021
, “
Methanol Synthesis Through CO2 Capture and Hydrogenation: Thermal Integration, Energy Performance and Techno-Economic Assessment
,”
J. CO2 Util.
,
44
, p.
101407
.10.1016/j.jcou.2020.101407
19.
Zhongming
,
Z.
,
Linong
,
L.
,
Xiaona
,
Y.
,
Wangqiang
,
Z.
, and
Wei
,
L.
,
2020
,
Iron and Steel Technology Roadmap
,
IEA
,
Paris
.
20.
Schittkowski
,
J.
,
Ruland
,
H.
,
Laudenschleger
,
D.
,
Girod
,
K.
,
Kähler
,
K.
,
Kaluza
,
S.
,
Muhler
,
M.
, and
Schlögl
,
R.
,
2018
, “
Methanol Synthesis From Steel Mill Exhaust Gases: Challenges for the Industrial Cu/ZnO/Al2O3 Catalyst
,”
Chem. Ing. Tech.
,
90
(
10
), pp.
1419
1429
.10.1002/cite.201800017
21.
Hoxha
,
A.
,
Palone
,
O.
,
Cedola
,
L.
,
Stendardo
,
S.
, and
Borello
,
D.
,
2022
, “
Development of a Novel Carbon Capture and Utilization Approach for Syngas Production Based on a Chemical Looping Cycle
,”
Fuel
,
325
, p.
124760
.10.1016/j.fuel.2022.124760
22.
Kang
,
K. S.
,
Kim
,
C. H.
,
Bae
,
K. K.
,
Cho
,
W. C.
,
Jeong
,
S. U.
,
Lee
,
Y. J.
, and
Park
,
C. S.
,
2014
, “
Reduction and Oxidation Properties of Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production
,”
Chem. Eng. Res. Des.
,
92
(
11
), pp.
2584
2597
.10.1016/j.cherd.2014.04.001
23.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2001
, “
The NIST Chemistry WebBook: A Chemical Data Resource on the Internet
,”
J. Chem. Eng. Data
,
46
(
5
), pp.
1059
1063
.10.1021/je000236i
24.
Fogler
.,
H. S.
, and
Fogler
,
S. H.
,
1999
,
Elements of Chemical Reaction Engineering
,
Pearson Education
, New York.
25.
Atsonios
,
K.
,
Panopoulos
,
K. D.
, and
Kakaras
,
E.
,
2016
, “
Investigation of Technical and Economic Aspects for Methanol Production Through CO2 Hydrogenation
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
2202
2214
.10.1016/j.ijhydene.2015.12.074
26.
Shi
,
C.
,
Elgarni
,
M.
, and
Mahinpey
,
N.
,
2021
, “
Process Design and Simulation Study: CO2 Utilization Through Mixed Reforming of Methane for Methanol Synthesis
,”
Chem. Eng. Sci.
,
233
, p.
116364
.10.1016/j.ces.2020.116364
You do not currently have access to this content.