Abstract

Hybrid electric propulsion system-based aircraft designs are paving the path toward a future greener aviation sector and thus, have been the major focus of the aeronautical community. The fuel efficiency improvement associated to such propulsion system configurations are realized at the aircraft level. In order to assess such benefits, a radical shift in the subsystem modeling requirements and of a conceptual-level aircraft design environment are necessary. This work highlights performance model development work pertaining to different hybrid electric propulsion system components and the development of a design platform that facilitates tighter integration of different novel propulsion system disciplines at the aircraft level. Furthermore, a serial/parallel partially distributed hybrid electric propulsion system is chosen as the candidate configuration to assess the potential benefits and associated tradeoffs by conducting multidisciplinary design space exploration studies. It is established that the distributed hybrid electric configurations pose the potential for aircraft structural weight reduction benefits. The study further illustrates the impacts of onboard charging during the low thrust requirement segments, quantitatively. The provision of onboard charging lowers the potential for block fuel savings, and improvement in battery specific energy can make it more promising, which is also dependent on the hybridization power level. It is established that distributed propulsion system configurations particularly benefit from a high aspect ratio wing structure, which manifests in high hybridization power levels. A high voltage level transmission system with more efficient electrical components enhances opportunities for achieving block fuel saving benefits.

References

1.
Krein
,
A.
, and
Williams
,
G.
,
2012
, “
Flightpath 2050: Europe's Vision for Aeronautics
,”
Innovation Sustainable Aviation a Global Environment: Proceedings of the Sixth European Aeronautics Days
, Vol.
30
, Madrid, Spain, Mar. 30–Apr. 1, pp.
63
71
.10.3233/978-1-61499-063-5-63
2.
IATA
,
2019
, “
Aircraft Technology Roadmap to 2050
,” IATA, Geneva, Switzerland, accessed Sept. 20, 2021, https://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/Technology-roadmap-2050.pdf
3.
Sahoo
,
S.
,
Zhao
,
X.
, and
Kyprianidis
,
K. G.
,
2020
, “
A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
,”
Aerospace
,
7
(
4
), p.
44
.10.3390/aerospace7040044
4.
Zhao
,
X.
,
Sahoo
,
S.
,
Kyprianidis
,
K. G.
,
Sumsurooah
,
S.
,
Valente
,
G.
,
Rashed
,
M.
,
Vakil
,
G.
,
Hill
,
C. I.
,
Jacob
,
C.
,
Gobbin
,
A.
,
Bardenhagen
,
A.
,
Prölss
,
K.
,
Sielemann
,
M.
,
Rantzer
,
J.
, and
Ekstedt
,
E.
,
2019
, “
A Framework for Optimization of Hybrid Aircraft
,”
ASME
Paper No. GT 2019-91335.10.1115/GT 2019-91335
5.
Sahoo
,
S.
,
Zhao
,
X.
,
Kyprianidis
,
K. G.
, and
Kalfas
,
A.
,
2019
, “
Performance Assessment of an Integrated Parallel Hybrid-Electric Propulsion System Aircraft
,”
ASME
Paper No. GT 2019-91459.10.1115/GT 2019-91459
6.
Kavvalos
,
M.
,
Diamantidou
,
D. E.
,
Kyprianidis
,
K. G.
,
Claesson
,
J.
, and
Sielemann
,
M.
,
2021
, “
Exploring Design Trade-Offs for Installed Parallel Hybrid Powertrain Systems
,”
AIAA
Paper No. AIAA 2021-3314.10.2514/6.2021-3314
7.
Kyprianidis
,
K. G.
,
Colmenares Quintero
,
R.
,
Pascovici
,
D.
,
Ogaji
,
S.
,
Pilidis
,
P.
, and
Kalfas
,
A.
,
2008
, “
EVA: A Tool for Environmental Assessment of Novel Propulsion Cycles
,”
ASME
Paper No. GT2008-50602.10.1115/GT2008-50602
8.
Kyprianidis
,
K. G.
, and
Dahlquist
,
E.
,
2017
, “
On the Trade-Off Between Aviation NOx and Energy Efficiency
,”
Appl. Energy
,
185
, pp.
1506
1516
.10.1016/j.apenergy.2015.12.055
9.
Larsson
,
L.
,
Grönstedt
,
T.
, and
Kyprianidis
,
K. G.
,
2012
, “
Conceptual Design and Mission Analysis for a Geared Turbofan and an Open Rotor Configuration
,”
ASME
Paper No. GT2011-46451.10.1115/GT2011-46451
10.
Kurzke
,
J.
,
2010
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME
Paper No. GT2009-59745.10.1115/GT2009-59745
11.
Kurzke
,
J.
,
2003
, “
Achieving Maximum Thermal Efficiency With the Simple Gas Turbine Cycle
,”
Proceedings of Ninth CEAS European Propulsion Forum: Virtual Engine-A Challenge for Integrated Computer Modelling
,
Rome, Italy
, Oct. 15–17.
12.
Fawke
,
A.
, and
Saravanamuttoo
,
H. S.
,
1971
, “
Digital Computer Methods for Prediction of Gas Turbine Dynamic Response
,”
SAE Trans.
, 80, pp.
1805
1813
.10.4271/710550
13.
Kavvalos
,
M.
,
Xin
,
Z.
,
Schnell
,
R.
,
Aslanidou
,
I.
,
Kalfas
,
A.
, and
Kyprianidis
,
K. G.
,
2019
, “
A Modelling Approach of Variable Geometry for Low Pressure Ratio Fans
,”
International Symposium on Air Breathing Engines, ISABE 2019
,
Canberra, Australia
, Sept. 23–27, Paper No. ISABE-2019-24382.https://www.researchgate.net/publication/336239105_A_Modelling_Approach_of_Variable_Geometry_for_Low_Pressure_Ratio_Fans
14.
Sielemann
,
M.
,
Pitchaikani
,
A.
,
Selvan
,
N.
, and
Sammak
,
M.
,
2017
, “
The Jet Propulsion Library: Modeling and Simulation of Aircraft Engines
,”
Proceedings of the 12th International Modelica Conference
,
Prague, Czech Republic
, May 15–17, pp.
909
920
.10.3384/ecp17132909
15.
Sielemann
,
M.
,
Thorade
,
M.
,
Claesson
,
J.
,
Nguyen
,
A.
,
Zhao
,
X.
,
Sahoo
,
S.
, and
Kyprianidis
,
K.
,
2019
, “
Modelica and Functional Mock-Up Interface: Open Standards for Gas Turbine Simulation
,”
ASME
Paper No. GT2019-91597.10.1115/GT2019-91597
16.
Onat
,
E.
, and
Klees
,
G.
,
1979
, “
A Method to Estimate Weight and Dimensions of Large and Small Gas Turbine Engines
,” Boeing Military Airplane Development, Seattle, WA, Report No.
NASA-CR-159481
.https://ntrs.nasa.gov/citations/19790006875
17.
Valente
,
G.
,
Sumsurooah
,
S.
,
Hill
,
C. I.
,
Rashed
,
M.
,
Vakil
,
G.
,
Bozhko
,
S.
, and
Gerada
,
C.
,
2020
, “
Design Methodology and Parametric Design Study of the on-Board Electrical Power System for Hybrid Electric Aircraft Propulsion
,”
Tenth International Conference on Power Electronics
, Machines and Drives: The Institution of Engineering and Technology, Online Conference, Dec. 15–17, pp. 448–454. 10.1049/icp.2021.1126
18.
Torenbeek
,
E.
,
1982
,
Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, With Emphasis on Layout, Aerodynamic Design, Propulsion and Performance
,
Springer Science & Business Media, Dordrecht, Germany
.
19.
Roskam
,
J.
,
1985
,
Airplane Design: Preliminary Sizing of Airplanes
, Design, Analysis and Research Corporation (DARcorporation), Lawrence, KS
.
20.
EASA
,
2009
,
Certification Specifications for Large Aeroplanes, cs 25
,
EASA
,
Cologne
,
Germany
.
21.
Scheunemann
,
A.
,
Jacob
,
C.
,
Bardenhagen
,
A.
,
Hoffmann
,
D.
, and
Würfel
,
P.
,
2020
, “
Structure-System Design Interdependencies of Hybrid-Electric Aircraft During Conceptual Design Phase
,”
Aerospace Europe Conference
, Bordeaux, France, Feb. 25–28.10.14279/depositonce-11470
22.
Jenkinson
,
L. R.
,
Simpkin
,
P.
,
Rhodes
,
D.
,
Jenkison
,
L. R.
, and
Royce
,
R.
,
1999
,
Civil Jet Aircraft Design
,
Arnold London
,
UK
.
23.
London, UK
,
1997
,
97016. Estimation of Airframe Drag by Summation of Components: Principles and Examples
, Engineering Sciences Data Unit (
ESDU)
, London, UK.
24.
Laskaridis
,
P.
,
2004
, “
Performance Investigations and Systems Architectures for the More Electric Aircraft
,”
Ph.D. dissertation
,
Cranfield University
, Cranfield,
UK
.http://hdl.handle.net/1826/2958
25.
Gray
,
J. S.
,
Hwang
,
J. T.
,
Martins
,
J. R.
,
Moore
,
K. T.
, and
Naylor
,
B. A.
,
2019
, “
OpenMDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization
,”
Struct. Multidiscip. Optim.
,
59
(
4
), pp.
1075
1104
.10.1007/s00158-019-02211-z
26.
Zhao
,
X.
,
Sahoo
,
S.
,
Kyprianidis
,
K. G.
,
Rantzer
,
J.
, and
Sielemann
,
M.
,
2019
, “
Off-Design Performance Analysis of Hybridized Aircraft Gas Turbine
,”
Aeronaut. J.
,
123
(
1270
), pp.
1999
2018
.10.1017/aer.2019.75
You do not currently have access to this content.