Abstract

In this study, we use an annular combustor experimental model with electroacoustic feedback to investigate systematically the effect of stochastic forcing and nonuniform flame response distribution on azimuthal thermoacoustic modes. We break the symmetry of a nominally degenerate mode of azimuthal order m by imposing a nonzero 2m Fourier component of the flame gain, b2m, and of the time-delay, ε2m. Various orientations between the gain and the time-delay staging patterns are considered. In addition, stochastic forcing is introduced. First, all experiments are performed without noise, as well as at the maximum noise intensity. We observe that the mode nature that dominates in the presence of intense noise may be far from the one observed in noise-free conditions. To better understand the effect of noise in the presence of asymmetries, we repeat some of the experiments at various noise intensities. Although our results confirm that for the axisymmetric configuration and some asymmetric configurations pure spinning modes are never reached, we also observe some radically different behaviors. For a noise-free experiment leading to a purely standing mode, the introduction of a sufficient amount of noise can lead to beating. We also observe that, for a mode that is nearly standing in the absence of noise, an increase in the noise intensity leads to the predominance of mixed modes with a clearly favored spinning direction. We explain our experimental results with the aid of low-order models.

References

1.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, Cambridge, UK.
2.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
3.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
(
P1
).10.1017/jfm.2020.239
4.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
5.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
6.
Ghirardo
,
G.
, and
Juniper
,
M. P.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. A
,
469
(
2157
), p.
20130232
.10.1098/rspa.2013.0232
7.
Nygard
,
H. T.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N.
,
2019
, “
Flame Dynamics of Azimuthal Forced Spinning and Standing Modes in an Annular Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5113
5120
.10.1016/j.proci.2018.08.034
8.
Faure-Beaulieu
,
A.
, and
Noiray
,
N.
,
2020
, “
Symmetry Breaking of Azimuthal Waves: Slow-Flow Dynamics on the Bloch Sphere
,”
Phys. Rev. Fluids
,
5
(
2
), p.
023201
.10.1103/PhysRevFluids.5.023201
9.
Humbert
,
S. C.
,
Moeck
,
J. P.
,
Orchini
,
A.
, and
Paschereit
,
C. O.
,
2021
, “
Effect of an Azimuthal Mean Flow on the Structure and Stability of Thermoacoustic Modes in an Annular Combustor Model With Electroacoustic Feedback
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061026
.10.1115/1.4048693
10.
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2016
, “
Progress in Analytical Methods to Predict and Control Azimuthal Combustion Instability Modes in Annular Chambers
,”
Phys. Fluids
,
28
(
2
), p.
021303
.10.1063/1.4940039
11.
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Monkewitz
,
P.
,
2006
, “
Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors
,”
AIAA
Paper No. 2006-0549.10.2514/6.2006-0549
12.
Ghirardo
,
G.
,
Juniper
,
M. P.
, and
Moeck
,
J. P.
,
2016
, “
Weakly Nonlinear Analysis of Thermoacoustic Instabilities in Annular Combustors
,”
J. Fluid. Mech.
,
805
, pp.
52
87
.10.1017/jfm.2016.494
13.
Noiray
,
N.
,
Bothien
,
M. R.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theor. Model.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
14.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
(
2151
), p.
20120535
.10.1098/rspa.2012.0535
15.
Ghirardo
,
G.
, and
Gant
,
F.
,
2021
, “
Averaging of Thermoacoustic Azimuthal Instabilities
,”
J. Sound Vib.
, 490, p.
115732
.10.1016/j.jsv.2020.115732
16.
Faure-Beaulieu
,
A.
,
Indlekofer
,
T.
,
Dawson
,
J. R.
, and
Noiray
,
N.
,
2021
, “
Experiments and Low-Order Modelling of Intermittent Transitions Between Clockwise and Anticlockwise Spinning Thermoacoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5943
5951
.10.1016/j.proci.2020.05.008
17.
Indlekofer
,
T.
,
Faure-Beaulieu
,
A.
,
Dawson
,
J. R.
, and
Noiray
,
N.
,
2022
, “
Spontaneous and Explicit Symmetry Breaking of Thermoacoustic Eigenmodes in Imperfect Annular Geometries
,”
J. Fluid Mech.
,
944
(
A15
).10.1017/jfm.2022.468
18.
Faure-Beaulieu
,
A.
,
Indlekofer
,
T.
,
Dawson
,
J. R.
, and
Noiray
,
N.
,
2021
, “
Imperfect Symmetry of Real Annular Combustors: Beating Thermoacoustic Modes and Heteroclinic Orbits
,”
J. Fluid. Mech.
,
925
(
R1
).10.1017/jfm.2021.649
19.
Berenbrink
,
P.
, and
Hoffmann
,
S.
,
2000
, “
Suppression of Dynamic Combustion Instabilities by Passive and Active Means
,”
ASME
Paper No. GT-0079.10.1115/GT-0079
20.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Bohn
,
D.
,
2001
, “
Prediction and Measurement of Thermoacoustic Improvements in Gas Turbines With Annular Combustion Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
557
566
.10.1115/1.1374437
21.
Parmentier
,
J.-F.
,
Salas
,
P.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
7
), pp.
2374
2387
.10.1016/j.combustflame.2012.02.007
22.
Aguilar
,
J. G.
,
Dawson
,
J. R.
,
Schuller
,
T.
,
Durox
,
D.
,
Prieur
,
K.
, and
Candel
,
S.
,
2021
, “
Locking of Azimuthal Modes by Breaking the Symmetry in Annular Combustors
,”
Combust. Flame
,
234
, p.
111639
.10.1016/j.combustflame.2021.111639
23.
Bauerheim
,
M.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Symmetry Breaking of Azimuthal Thermo-Acoustic Modes in Annular Cavities: A Theoretical Study
,”
J. Fluid Mech.
,
760
, pp.
431
465
.10.1017/jfm.2014.578
24.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.10.1115/GT2010-23577
25.
Ghirardo
,
G.
,
Juniper
,
M. P.
, and
Bothien
,
M. R.
,
2018
, “
The Effect of the Flame Phase on Thermoacoustic Instabilities
,”
Combust. Flame
,
187
, pp.
165
184
.10.1016/j.combustflame.2017.09.007
26.
Bonciolini
,
G.
,
Faure-Beaulieu
,
A.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2021
, “
Low Order Modelling of Thermoacoustic Instabilities and Intermittency: Flame Response Delay and Nonlinearity
,”
Combust. Flame
,
226
, pp.
396
411
.10.1016/j.combustflame.2020.12.034
27.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame–Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
28.
Orchini
,
A.
,
Silva
,
C. F.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Thermoacoustic Modes of Intrinsic and Acoustic Origin and Their Interplay With Exceptional Points
,”
Combust. Flame
,
211
, pp.
83
95
.10.1016/j.combustflame.2019.09.018
29.
Ghirardo
,
G.
, and
Bothien
,
M. R.
,
2018
, “
Quaternion Structure of Azimuthal Instabilities
,”
Phys. Rev. Fluids
,
3
(
11
), p.
113202
.10.1103/PhysRevFluids.3.113202
30.
Lieuwen
,
T. C.
,
2003
, “
Statistical Characteristics of Pressure Oscillations in a Premixed Combustor
,”
J. Sound Vib.
,
260
(
1
), pp.
3
17
.10.1016/S0022-460X(02)00895-7
31.
Bonciolini
,
G.
,
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Output-Only Parameter Identification of a Colored-Noise-Driven Van-Der-Pol Oscillator: Thermoacoustic Instabilities as an Example
,”
Phys. Rev. E
,
95
(
6
), p.
062217
.10.1103/PhysRevE.95.062217
32.
Moeck
,
J. P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2019
, “
Nonlinear Thermoacoustic Mode Synchronization in Annular Combustors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5343
5350
.10.1016/j.proci.2018.05.107
33.
Orchini
,
A.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2019
, “
Effects of Nonlinear Modal Interactions on the Thermoacoustic Stability of Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021002
.10.1115/1.4040768
You do not currently have access to this content.