Abstract

Since the health status of gas turbine engine is difficult to quantify, which brings great challenges to health assessment and remaining useful life predictions. To solve this problem, a gray target calculation and cloud gravity center (GTC–CGC) health assessment method is proposed. The three-dimensional data normalization process is to characterize the different initial states between samples. The empirical signal-to-noise ratio and entropy weight are used to calculate the subjective and objective weights of health indicators, and convex optimization is used to realize the fusion assessment. The sliding time window method is used to calculate the real-time health state of the gas turbine engine. Finally, health assessment and remaining useful life prediction tests were conducted on turbofan engines using the NASA C-MAPSS dataset. The experimental results show that compared with the self-organizing neural network, the monotonicity, robustness, and trend of the health assessment results were improved by 0.3216, 0.0843, and 0.0355, respectively. The third-order linear regression algorithm was used for remaining useful life prediction, the prediction score of this model is 265, and root mean squared error is 26.1542, which is equivalent to the prediction accuracy of mainstream intelligent prediction methods such as neural network.

References

1.
Lakshminarasimha
,
A. N.
,
Boyce
,
M. P.
, and
Meher-Homji
,
C. B.
,
1994
, “
Modeling and Analysis of Gas Turbine Performance Deterioration
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
46
52
.10.1115/1.2906808
2.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
, 136(5), p.
051201
.10.1115/1.4026126
3.
Zhan
,
J.
,
Wang
,
R.
,
Yi
,
L.
,
Wang
,
Y.
, and
Xie
,
Z.
,
2019
, “
Health Assessment Methods for Wind Turbines Based on Power Prediction and Mahalanobis Distance
,”
Int. J. Pattern Recognit. Artif. Intell.
, 33(2), p.
1951001
.10.1142/S0218001419510017
4.
Zhao
,
Z.
,
2019
, “
Application of Multi-Attribute Weighted Gray Target Decision in Automobile Noise Reduction Scheme Evaluation
,”
SAE Int. J. Commer. Veh.
,
12
(
3
), pp.
173
178
.10.4271/02-12-03-0014
5.
Patil
,
A. N.
,
2017
, “
Car Selection Using Hybrid Fuzzy AHP and Grey Relation Analysis Approach
,”
Int. J. Performability Eng.
,
13
(
5
), pp.
569
576
.10.23940/ijpe.17.05.p2.569576
6.
Li
,
D.
,
Cheung
,
D.
,
Shi
,
X.
, and
Ng
,
V.
,
1998
, “
Uncertainty Reasoning Based on Cloud Models in Controllers
,”
Comput. Math. Appl.
,
35
(
3
), pp.
99
123
.10.1016/S0898-1221(97)00282-4
7.
Guo
,
R.
,
Xia
,
J.
, and
Zhang
,
L.
,
2010
, “
Research on Multiple Attribute Evaluation Method Based on Cloud Model
,”
Proceeding of IEEE Aerospace Conference
,
China, Shenyang
, Mar. 27–29, pp.
103
106
.10.1109/ICACC.2010.5487057
8.
Ma
,
L. Y.
, and
Shi
,
Q. S.
,
2011
, “
Method of Safety Assessment About the Electric Power Supply Company Based on Cloud Gravity Center Theory
,”
Adv. Mater. Res.
,
354–355
, pp.
1149
1156
.10.4028/www.scientific.net/AMR.354-355.1149
9.
Cao
,
Y.
, and
Wu
,
M.
,
2017
, “
Health Condition Assessment of Gas Turbine Generator on Offshore Platform
,”
ASME
Paper No. GT2017-64455.10.1115/GT2017-64455
10.
Kelly
,
J. D.
, and
Hedengren
,
J. D.
,
2013
, “
A Steady-State Detection (SSD) Algorithm to Detect Non-Stationary Drifts in Processes
,”
J. Process Control
,
23
(
3
), pp.
326
331
.10.1016/j.jprocont.2012.12.001
11.
Zhao
,
W. L.
,
Deng
,
C. H.
, and
Ngo
,
C. W.
,
2018
, “
K-Means: A Revisit
,”
Neurocomputing
,
291
(
24
), pp.
195
206
.10.1016/j.neucom.2018.02.072
12.
Capo
,
M.
,
Perez
,
A.
, and
Lozano
,
J. A.
,
2017
, “
An Efficient Approximation to the K-Means Clustering for Massive Data
,”
Knowl.-Based Syst.
,
117
, pp.
56
69
.10.1016/j.knosys.2016.06.031
13.
Saxena
,
A.
,
Kai
,
G.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-To-Failure Simulation
,”
Proceedings of International Conference on Prognostics and Health Management
,
Denver, CO,
Oct. 6–9, pp.
1
25
.10.1109/PHM.2008.4711414
14.
Ramasso
,
E.
, and
Denoeux
,
T.
,
2014
, “
Making Use of Partial Knowledge About Hidden States in HMMs: An Approach Based on Belief Functions
,”
IEEE Trans. Fuzzy Syst.
,
22
(
2
), pp.
395
405
.10.1109/TFUZZ.2013.2259496
15.
Liu
,
S. F.
,
Forrest
,
J.
, and
Vallee
,
R.
,
2009
, “
Emergence and Development of Grey Systems Theory
,”
Kybernetes
,
38
(
7/8
), pp.
1246
1256
.10.1108/03684920910976943
16.
Ye
,
C. Q.
,
Shi
,
W. Y.
, and
Zhang
,
R.
,
2021
, “
Research on Gray Correlation Analysis and Situation Prediction of Network Information Security
,”
EURASIP J. Inf. Secur.
,
2021
(
1
), pp.
1
6
.10.1186/s13635-021-00118-1
17.
Elzamly
,
A.
,
Hussin
,
B.
,
Abu-Naser
,
S.
,
Khanfar
,
K.
,
Doheir
,
M.
,
Selamat
,
A.
, and
Rashed
,
A.
,
2016
, “
A New Conceptual Framework Modelling for Cloud Computing Risk Management in Banking Organizations
,”
Int. J. Grid Distrib. Comput.
,
9
(
9
), pp.
137
154
.10.14257/ijgdc.2016.9.9.13
18.
Xiao
,
L. M.
,
Huang
,
G. Q.
, and
Zhang
,
G. B.
,
2021
, “
Improved Assessment Model for Candidate Design Schemes With an Interval Rough Integrated Cloud Model Under Uncertain Group Environment
,”
Eng. Appl. Artif. Intell.
,
104
, p.
104352
.10.1016/j.engappai.2021.104352
19.
Wang
,
T.
, and
Yu
,
J.
,
2008
, “
A Simuilarity-Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems
,” Proceedings of International Conference on Prognostics and Health Management (
ICPHM
), Denver, CO, Oct. 6–9, pp.
1
6
.10.1109/PHM.2008.4711421
20.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Process.
,
104
(
1
), pp.
799
834
.10.1016/j.ymssp.2017.11.016
21.
Li
,
X.
,
Qian
,
J.
, and
Wang
,
G.-G.
,
2013
, “
Fault Prognostic Based on Hybrid Method of State Judgment and Regression
,”
Adv. Mech. Eng.
,
5
, p.
149562
.10.1155/2013/149562
22.
Ramasso
,
E.
,
2014
, “
Investigating Computational Geometry for Failure Prognostics in Presence If Imprecise Health Indicator: Results and Comparisons on C-MAPSS Datasets
,”
Proceedings of the European Conference of the PHM Society
,
France
, July 8–10, pp.
1
18
.
23.
KhanhLe
,
S.
,
2013
, “
Remaining Useful Life Estimation Based on Stochastic Deterioration Models: A Comparative Study
,”
Reliab. Eng. Syst. Saf.
,
112
, pp.
165
175
.10.1016/J.RESS.2012.11.022
24.
Wang
,
P.
,
Youn
,
B. D.
, and
Hu
,
C.
,
2012
, “
A Generic Probabilistic Framework for Structural Health Prognostics and Uncertainty Management
,”
Mech. Syst. Signal Process.
,
28
, pp.
622
637
.10.1016/j.ymssp.2011.10.019
25.
Wang
,
Q.
,
Wang
,
Q.
,
Zheng
,
S.
,
Farahat
,
A. K.
, and
Serita
,
S.
,
2019
, “
Remaining Useful Life Estimation Using Functional Data Analysis
,” Proceedings of International Conference on Prognostics and Health Management (
ICPHM
), San Francisco, CA, June 17–19, pp.
1
8
.10.1109/ICPHM.2019.8819420
26.
Shuai
,
Z.
,
Ristovski
,
K.
,
Farahat
,
A.
, and
Gupta
,
C.
,
2017
, “
Long Short-Term Memory Network for Remaining Useful Life Estimation
,” Proceedings of International Conference on Prognostics and Health Management (
ICPHM
),
Dallas, TX
, June 19–21, pp.
88
95
.10.1109/ICPHM.2017.7998311
27.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
172
, pp.
1
11
.10.1016/j.ress.2017.11.021
28.
Laredo
,
D.
,
Chen
,
Z.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2019
, “
A Neural Network-Evolutionary Computational Framework for Remaining Useful Life Estimation of Mechanical Systems
,”
Neural Networks
,
116
, pp.
178
187
.10.1016/j.neunet.2019.04.016
29.
Listou Ellefsen
,
A.
,
Bjørlykhaug
,
E.
,
Æsøy
,
V.
,
Ushakov
,
S.
, and
Zhang
,
H.
,
2019
, “
Remaining Useful Life Predictions for Turbofan Engine Degradation Using Semi-Supervised Deep Architecture
,”
Reliab. Eng. Syst. Saf.
,
183
(
1
), pp.
240
251
.10.1016/j.ress.2018.11.027
You do not currently have access to this content.