Abstract

Increasing demand for turbine power and efficiency requires larger and higher loaded turbine blades, which in turn requires the consideration of aeromechanical interactions. Whilst CFD tools can reliably predict stability using aerodynamic damping as an indicator, the component of mechanical damping also needs consideration. An understanding of the mechanical damping in the system becomes key to a robust blade design. Mechanical damping for such a part comes predominantly from friction occurring at the coupling contact faces. It is well established and published that such contact forces are nonlinear in relation to the relative movement at the contact interface. Moreover, contact area, the rigidity in the contact, friction coefficient, and normal contact force must also be considered and included as parameters that influence the result. Consequently, the level of system damping is not a constant and depends highly on the system response itself, as well as the other aforementioned parameters. In the case of self-excited vibrations such as flutter, the evaluation of the damped limit response is a part of the blade design process. A tool has been developed to numerically simulate contact friction forces with the intention of parametrically evaluating the limit response and relating this to the mechanical integrity of the part. This paper presents the modeling of a coupled blade system with friction contact forces, results coming from this evaluation, and a comparison with test data.

References

1.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
2.
Herzog
,
A.
,
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
, “
Comparison of Two Widely-Used Frequency-Time Domain Contact Models for the Vibration Simulation of Shrouded Turbine Blades
,”
ASME
Paper No. GT2014-26226.10.1115/GT2014-26226
3.
Gastaldi
,
C.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2018
, “
Jacobian Projection Reduced-Order Models for Dynamic Systems With Contact Nonlinearities
,”
Mech. Syst. Signal Process.
,
100
, pp.
550
569
.10.1016/j.ymssp.2017.07.049
4.
Schwarz
,
S.
,
Kohlmann
,
L.
,
Hartung
,
A.
,
Gross
,
J.
,
Scheel
,
M.
, and
Krack
,
M.
,
2020
, “
Validation of a Turbine Blade Component Test With Frictional Contacts by Phase-Locked-Loop and Force-Controlled Measurements
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051006
.10.1115/1.4044772
5.
Yang
,
B. D.
,
Chu
,
M. L.
, and
Menq
,
C. H.
,
1998
, “
Stick–Slip–Separation Analysis and Non-Linear Stiffness and Damping Charaterization of Friction Contacts Having Variable Normal Load
,”
J. Sound Vib.
,
210
(
4
), pp.
461
481
.10.1006/jsvi.1997.1305
6.
Cardona
,
A.
,
Coune
,
T.
,
Lerusse
,
A.
, and
Geradin
,
M.
,
1994
, “
A Multiharmonic Method for Nonlinear Vibration Analysis
,”
Int. J. Numer. Methods Eng.
,
37
(
9
), pp.
1593
1608
.10.1002/nme.1620370911
7.
Firrone
,
C. M.
, and
Zucca
,
S.
,
2011
, “
Modelling Friction Contacts in Structural Dynamics and Its Application to Turbine Bladed Disks
,”
Numerical Analysis—Theory and Application
, Prof.
Jan
Awrejcewicz
, ed., Ch. 14,
InTech
,
Rijeka, Croatia
, pp.
301
334
.
8.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
,
2010
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
08250
.10.1115/1.4000266
9.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.10.1115/1.1539868
10.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Springer
, Berlin.
11.
Gastaldi
,
C.
, and
Gola
,
M. M.
, “
Criteria for Best Performance of Pre-Optimized Solid Dampers
,”
ASME
Paper No. GT2018-75961.10.1115/GT2018-75961
12.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C. W.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
(
1
), pp.
327
340
.10.1016/j.jsv.2018.08.014
13.
Gastaldi
,
C.
,
Gross
,
J.
,
Scheel
,
M.
,
Berruti
,
T. M.
, and
Krack
,
M.
,
2020
, “
Modeling Complex Contact Conditions and Their Effect on Blade Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
143
(
1
), p.
011007
.10.1115/1.4049186
14.
Ferhatoglu
,
E.
, and
Zucca
,
S.
,
2021
, “
Determination of Periodic Response Limits Among Multiple Solutions for Mechanical Systems With Wedge Dampers
,”
J. Sound Vib.
,
494
, p.
115900
.10.1016/j.jsv.2020.115900
15.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2018
, “
Best Practices for Underplatform Damper Designers
,”
Proc. Inst. Mech. Eng., Part C
, 232(
7
), pp.
1221
1235
.10.1177/0954406217753654
16.
Cameron
,
T. M.
,
Griffin
,
J. H.
,
Kielb
,
R. E.
, and
Hoosac
,
T. M.
, Apr
1990
, “
An Integrated Approach for Friction Damper Design
,”
ASME J. Vib. Acoust.
,
112
(
2
), pp.
175
182
.10.1115/1.2930110
17.
Berruti
,
T.
, and
Maschio
,
V.
,
2012
, “
Experimental Investigation on the Forced Response of a Dummy Counter-Rotating Turbine Stage with Friction Damping
,”
ASME J. Eng. Gas Turbines Power
, 134(
12
), p. 122502.10.1115/1.4007325
18.
Gastaldi
,
C.
,
Berruti
,
T. M.
,
Gola
,
M. M.
, 2017,
“The Relevance of Damper Pre-Optimization and Its Effectiveness on the Forced Response of Blades,”
ASME
Paper No. GT2017-64402.10.1115/GT2017-64402
19.
Griffin
,
J. H.
, and
Menq
,
C. H.
,
1991
, “
Friction Damping of Circular Motion and Its Application to Vibration Control
,”
ASME J. Vib. Acoust.
,
113
(
2
), pp.
225
229
.10.1115/1.2930173
20.
Zucca
,
S.
,
Gola
,
M. M.
, and
Piraccini
,
F.
, “
Non-Linear Dynamics of Steam Turbine Blades With Shroud: Numerical Analysis and Experiments
,”
ASME
Paper No. GT2012-69692.10.1115/GT2012-69692
21.
Lavella
,
M.
, and
Botto
,
D.
,
2018
, “
Fretting Fatigue Analysis of Additively Manufactured Blade Root Made of Intermetallic Ti-48Al-2Cr-2Nb Alloy at High Temperature
,”
Materials
,
11
(
7
), p.
1052
.10.3390/ma11071052
22.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
23.
Berthillier
,
M.
,
Dupont
,
C.
,
Mondal
,
R.
, and
Barrau
,
J. J.
,
1998
, “
Blades Forced Response Analysis With Friction Dampers
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
468
474
.10.1115/1.2893853
24.
Zucca
,
S.
, and
Firrone
,
C. M.
,
2014
, “
Nonlinear Dynamics of Mechanical Systems With Friction Contacts: Coupled Static and Dynamic Multi-Harmonic Balance Method and Multiple Solutions
,”
J. Sound Vib.
,
333
(
3
), pp.
916
926
.10.1016/j.jsv.2013.09.032
25.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2016
, “
Testing, Simulating and Understanding Under-Platform Damper Dynamics
,” Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (
ECCOMAS Congress
), Crete, Greece, June 5–10, Vol. 3, pp.
4599
4610
.10.7712/100016.2134.11184
You do not currently have access to this content.