Abstract
Modern gas turbines operate in very demanding thermomechanical conditions. The operating temperatures are typically higher than material capability, which requires the parts to be cooled. This work aims to provide a concise overview of the current cooling methods and heat transfer mechanisms occurring in modern gas turbines, including different types of turbulence promoters, impingement, film cooling, microcooling, and the impact of recent applications of additive manufacturing.
Issue Section:
Review Article
References
1.
Cumpsty
,
N.
, 2003
, Jet Propulsion: A Simple Guide to the Aerodynamics and Thermodynamics Design and Performance of Jet Engines
,
Cambridge University Press
, Cambridge, UK.2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2012
, Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
, Boca Raton, FL
.3.
Bunker
,
R. S.
,
Dees
,
J. E.
, and
Palafox
,
P.
, 2014
, “
Impingement Cooling in Gas Turbines: Design, Applications, and Limitations
,” Impingement Jet Cooling in Gas Turbines (WIT Transactions on State-of-the-Art in Science and Engineering, Vol. 76)
,
WIT Press
, Ashurst, UK
, pp. 1755
–8336
.4.
Zuckerman
,
N.
, and
Lior
,
N.
, 2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,” Adv. Heat Transfer
,
39
, pp. 565
–631
.10.1016/S0065-2717(06)39006-55.
Bunker
,
R. S.
, 2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,” ASME J. Turbomach.
,
129
(2
), pp. 193
–201
.10.1115/1.24641426.
Bunker
,
R. B.
, 2008
, “
Innovative Gas Turbine Cooling Techniques
,” WIT Transactions on State-of-the-Art in Science and Engineering
, Vol.
42
,
WIT Press
, Ashurst, UK.7.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003
, “Comparison of Heat Transfer Augmentation Techniques
,” AIAA J.
, 41
(3
), pp. 337
–362
. 10.2514/2.19648.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1971
, “
Heat Transfer and Friction in Tubes With Repeated-Rib Roughness
,” Int. J. Heat Mass Transfer
,
14
(4
), pp. 601
–617
.10.1016/0017-9310(71)90009-39.
Burggraf
,
F.
, 1970
, “
Experimental Heat Transfer and Pressure Drop With Two-Dimensional Discrete Turbulence Promoters Applied to Two Opposite Walls of a Square Tube
,” ASME, New York, pp. 70
–79
.10.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
, 1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,” Int. J. Heat Mass Transfer
,
21
(8
), pp. 1143
–1156
.10.1016/0017-9310(78)90113-811.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2003
, “
Heat Transfer and Friction in Channels With Very High Blockage 45 Staggered Turbulators
,” ASME
Paper No. GT2003-38611.10.1115/GT2003-3861112.
Hahn
,
T.
,
Deakins
,
B.
,
Buechler
,
A.
,
Kumar
,
S.
, and
Amano
,
R. S.
, 2012
, “
Experimental Analysis of the Heat Transfer Variations Within an Internal Passage of a Typical Gas Turbine Blade Using Varied Internal Geometries
,” ASME
Paper No. DETC2012-70686.10.1115/DETC2012-7068613.
Nourin
,
F. N.
, and
Amano
,
R.
, 2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,” ASME J. Energy Resour. Technol.
,
143
(8
), p. 080801.10.1115/1.404886514.
Naik
,
S.
,
Retzko
,
S.
,
Gritsch
,
M.
, and
Sedlov
,
A.
, 2014
, “
Impact of Turbulator Design on the Heat Transfer in a High Aspect Ratio Passage of a Turbine Blade
,” ASME
Paper No. GT2014-25841.10.1115/GT2014-2584115.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
, 2014
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,” ASME
Paper No. 98-GT-464.10.1115/98-GT-46416.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
, 1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,” ASME J. Turbomach.
,
114
(4
), pp. 847
–857
.10.1115/1.292803817.
Dutta
,
S.
,
Han
,
J.-C.
, and
Zhang
,
Y.-M.
, 1995
, “
Influence of Rotation on Heat Transfer From a Two-Pass Channel With Periodically Placed Turbulence and Secondary Flow Promoters
,” Int. J. Rotating Mach.
,
1
(2
), pp. 129
–144
.10.1155/S1023621X9500003018.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,” ASME J. Turbomach.
,
113
(1
), pp. 42
–51
.10.1115/1.292773619.
Žukauskas
,
A.
, 1972
, “
Heat Transfer From Tubes in Crossflow
,” Adv. Heat Transfer
,
8
, pp. 93
–160
.10.1016/S0065-2717(08)70038-820.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
, 1980
, “
Experiments on In-Line Pin Fin Arrays and Performance Comparisons With Staggered Arrays
,” ASME J. Heat Mass Transfer-Trans.
,
102
(1
), pp. 44
–50
.10.1115/1.324424721.
Metzger
,
D. E.
, and
Haley
,
S. W.
, 1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,” ASME
Paper No. 82-GT-138.10.1115/82-GT-13822.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,” ASME J. Heat Mass Transfer-Trans. ASME
,
104
(4
), pp. 700
–706
.10.1115/1.324518823.
VanFossen
,
G. J.
, 1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,” J. Eng. Power
,
104
(2
), pp. 268
–274
.10.1115/1.322727524.
Chyu
,
M. K.
, and
Natarajan
,
V.
, 1996
, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,” Int. J. Heat Mass Transfer
,
39
(14
), pp. 2925
–2935
.10.1016/0017-9310(95)00381-925.
Otto
,
M.
,
Hodges
,
J.
,
Gupta
,
G.
, and
Kapat
,
J. S.
, 2019
, “
Vortical Structures in Pin Fin Arrays for Turbine Cooling Applications
,” ASME
Paper No. GT2019-90552.10.1115/GT2019-9055226.
Afanasýew
,
V. N.
,
Veselkin
,
V. Y.
,
Leontiev
,
A. I.
,
Skibin
,
A. P.
, and
Chudnovskiy
,
Y. P.
, 1993
, “
Thermohydraulics of Flow Over Isolated Depressions (Pits, Grooves) in a Smooth Wall
,” Heat Transfer Res.
,
25
(1
), pp. 22
–56
.27.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
, 2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,” J. Thermophys. Heat Transfer
,
27
(4
), pp. 653
–659
.10.2514/1.T404628.
Khalatov
,
A. A.
, 2001
, “
Vortex Technologies in Aerospace Engineering
,” Proceedings of the US–Ukrainian Workshop on Innovative Combustion and Aerothermal Technologies in Energy and Power Systems
, Kiev, Ukraine, May 21–24, pp. 20
–25
.29.
Seibold
,
F.
,
Ligrani
,
P.
, and
Weigand
,
B.
, 2022
, “Flow and Heat Transfer in Swirl Tubes — A Review
,” Int. J. Heat Mass Transfer
, 187
, p. 122455
. 10.1016/j.ijheatmasstransfer.2021.12245530.
Wright
,
L. M.
, and
Han
,
J.-C.
, 2006
, “
Enhanced Internal Cooling of Turbine Blades and Vanes
,” The Gas Turbine Handbook
, Vol. 4
, U.S. Department of Energy, National Energy Technology Laboratory
, Pittsburgh, PA
, pp. 1
–5
.31.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H.
, 2011
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,” ASME J. Turbomach.
,
133
(4
), p. 041012
.10.1115/1.400298932.
Metzger
,
D. E.
, and
Korstad
,
R. J.
, 1972
, “
Effects of Crossflow on Impingement Heat Transfer
,” J. Eng. Power
,
94
(1
), pp. 35
–41
.10.1115/1.344561633.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
, 2015
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,” ASME
Paper No. 81-GT-77.10.1115/81-GT-7734.
Gardon
,
R.
, and
Akfirat
,
J. C.
, 1966
, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on It
,” ASME J. Heat Mass Transfer-Trans. ASME
,
88
(1
), pp. 101
–107
.10.1115/1.369144935.
Petzold
,
K.
, 1964
, “
Heat Transfer on a Perpendicularly Impinged Plate
,” Wiss. Z. Tech. Univ. Dresden
,
13
, pp. 1157
–1161
.36.
Martin
,
H.
, 1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,” Adv. Heat Transfer
,
13
, pp. 1
–60
.10.1016/S0065-2717(08)70221-137.
Son
,
C.
,
Gillespie
,
D.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
, 2000
, “
Heat Transfer Enhancement Strategy for an Impingement Cooling System
,” Proceedings of the Eighth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Mar. 26–30, pp. 721
–729
.38.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
, 2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,” ASME J. Turbomach.
,
123
(1
), pp. 147
–153
.10.1115/1.133153739.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
, 2008
, “
Heat Transfer and Pressure Investigation of Dimple Impingement
,” ASME
Paper No. GT2005-68823.10.1115/GT2005-6882340.
Osorio
,
A.
,
Hodges
,
J.
,
Zawati
,
H.
,
Fernandez
,
E. J.
,
Kapat
,
J. S.
, and
Rodriguez
,
J.
, 2019
, “
Impact of Sweeping Jet on Area-Averaged Impingement Heat Transfer
,” ASME
Paper No. GT2019-91897.10.1115/GT2019-9189741.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
, 2006
, “
Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model
,” ASME J. Turbomach.
,
128
(3
), pp. 564
–571
.10.1115/1.218512242.
Nagoga
,
G. P.
, 1996
, “
Effective Methods of Cooling of Blades of High Temperature Gas Turbines
,” Publishing House of Moscow Aerospace Institute, Moscow, Russia, p. 100
.43.
Luo
,
J.
,
Rao
,
Y.
,
Yang
,
L.
,
Yang
,
M.
, and
Su
,
H.
, 2021
, “
Computational Analysis of Turbulent Flow and Heat Transfer in Latticework Cooling Structures Under Various Flow Configurations
,” Int. J. Therm. Sci.
,
164
, p. 106912
.10.1016/j.ijthermalsci.2021.10691244.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
, 2008
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,” ASME
Paper No. GT2004-54260.10.1115/GT2004-5426045.
Ligrani
, P. M.
, 2013
, “Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,” Int. J. Rot. Machin.
,
2013
, p. e275653
. 10.1155/2013/27565346.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
, 2012
, “
Heat Transfer Enhancement Due to Combination of Dimples, Protrusions, and Ribs in Narrow Internal Passage of Gas Turbine Blade
,” ASME
Paper No. GT2011-45356.10.1115/GT2011-4535647.
Lau
,
S. C.
,
Han
,
J. C.
, and
Kim
,
Y. S.
, 1989
, “
Turbulent Heat Transfer and Friction in Pin Fin Channels With Lateral Flow Ejection
,” ASME J. Heat Mass Transfer-Trans. ASME
,
111
(1
), pp. 51
–58
.10.1115/1.325065748.
Goldstein
,
R. J.
, 1971
, “
Film Cooling
,” Adv. Heat Transfer
,
7
, pp. 321
–379
.10.1016/S0065-2717(08)70020-049.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2009
, “
Correlation of Film Cooling Effectiveness From Thermographic Measurements at Engine Like Conditions
,” ASME
Paper No. GT2002-30180.10.1115/GT2002-3018050.
Bogard
,
D. G.
, 2006
, “
Film Cooling
,” The Gas Turbine Handbook
,
U.S. Department of Energy, National Energy Technology Laboratory
, Pittsburgh, PA.51.
Bunker
,
R. S.
, 2006
, “
Cooling Design Analysis
,” The Gas Turbine Handbook
,
U.S. Department of Energy, National Energy Technology Laboratory
, Pittsburgh, PA.52.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1991
, “
The Influence of Curvature on Film Cooling Performance
,” ASME J. Turbomach.
,
113
(3
), pp. 472
–478
.10.1115/1.292789853.
Moore
,
J. D.
,
Yoon
,
C.
, and
Bogard
,
D. G.
, 2019
, “
Surface Curvature Effects on Film Cooling Performance for Shaped Holes on a Model Turbine Blade
,” ASME
Paper No. GT2019-91476.10.1115/GT2019-9147654.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
, 2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,” ASME J. Turbomach.
,
128
(3
), pp. 547
–554
.10.1115/1.218567455.
Bogard
,
D. G.
,
Snook
,
D.
, and
Kohli
,
A.
, 2008
, “
Rough Surface Effects on Film Cooling of the Suction Side Surface of a Turbine Vane
,” ASME
Paper No. IMECE2003-42061.10.1115/IMECE2003-4206156.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 2015
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,” ASME
Paper No. 96-GT-462.10.1115/96-GT-46257.
Abhari
,
R. S.
, 1996
, “
Impact of Rotor–Stator Interaction on Turbine Blade Film Cooling
,” ASME J. Turbomach.
,
118
(1
), pp. 123
–133
.10.1115/1.283659358.
Collins
,
M.
, and
Povey
,
T.
, 2015
, “
Exploitation of Acoustic Effects in Film Cooling
,” ASME J. Eng. Gas Turbines Power
,
137
(10
), p. 102602
.10.1115/1.403010259.
Bunker
,
R. S.
, 2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,” ASME J. Heat Mass Transfer-Trans. ASME
,
127
(4
), pp. 441
–453
.10.1115/1.186056260.
Bunker
,
R. S.
, 2017
, “
Evolution of Turbine Cooling
,” ASME
Paper No. GT2017-63205.10.1115/GT2017-6320561.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,” ASME J. Turbomach.
,
125
(1
), pp. 65
–73
.10.1115/1.151533662.
Haven
,
B. A.
, and
Kurosaka
,
M.
, 1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,” J. Fluid Mech.
,
352
, pp. 27
–64
.10.1017/S002211209700727163.
Funazaki
,
K.
,
Kikuchi
,
F.
,
Tashiro
,
I.
,
Ideta
,
T.
, and
Tanaka
,
Y.
, 2018
, “
Studies on Cooling Performance of Round Cooling Holes With Various Configurations on a High-Pressure Turbine Vane
,” ASME
Paper No. GT2018-75439.10.1115/GT2018-7543964.
Kusterer
,
K.
,
Tekin
,
N.
,
Wüllner
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
, 2014
, “
Nekomimi Film Cooling Holes Configuration Under Conjugate Heat Transfer Conditions
,” ASME
Paper No. GT2014-25845.10.1115/GT2014-2584565.
Wang
,
N.
,
Zhang
,
M.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
, 2019
, “
Film Cooling Effectiveness From Two Rows of Compound Angled Cylindrical Holes Using Pressure-Sensitive Paint Technique
,” ASME J. Heat Mass Transfer-Trans. ASME
,
141
(4
), p. 042202
.10.1115/1.404277766.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
, 2018
, “
Effects of Exit Fan Angle on the Heat Transfer Performance of Sweeping Jet Impingement
,” AIAA
Paper No. 2018-4886.10.2514/6.2018-488667.
Watson
,
T. B.
,
Vinton
,
K. R.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
, 2019
, “
Influence of Hole Inlet Geometry on the Film Cooling Effectiveness From Shaped Film Cooling Holes
,” ASME
Paper No. GT2019-92057.10.1115/GT2019-9205768.
Moser
,
S.
,
Ivanisin
,
M.
,
Woisetschläger
,
J.
, and
Jericha
,
H.
, 2014
, “
Novel Blade Cooling Engineering Solution
,” ASME
Paper No. 2000-GT-0242.10.1115/2000-GT-024269.
Bunker
,
R. S.
, 2009
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,” ASME
Paper No. GT2002-30178.10.1115/GT2002-3017870.
Kalghatgi
,
P.
, and
Acharya
,
S.
, 2019
, “
Flow Dynamics of a Film Cooling Jet Issued From a Round Hole Embedded in Contoured Crater
,” ASME J. Turbomach.
,
141
(8
), p. 081006
.10.1115/1.404307171.
Wang
,
C.-C.
, and
Roy
,
S.
, 2009
, “
Active Cooling of Turbine Blades Using Horse-Shoe Plasma Actuator
,” AIAA
Paper No. 2009-679.10.2514/6.2009-67972.
Abdeh
,
H.
,
Barigozzi
,
G.
,
Ravelli
,
S.
, and
Rouina
,
S.
, 2019
, “
A Parametric Investigation of Vane Showerhead Film Cooling by PSP Technique
,” ASME
Paper No. GT2019-90019.10.1115/GT2019-9001973.
Ritchie
,
D.
,
Click
,
A.
,
Ligrani
,
P. M.
,
Liberatore
,
F.
,
Patel
,
R.
, and
Ho
,
Y.-H.
, 2019
, “
Double Wall Cooling of an Effusion Plate With Simultaneous Cross Flow and Impingement Jet Array Internal Cooling
,” ASME J. Eng. Gas Turbines Power
,
141
(9
), p. 091008
.10.1115/1.404369474.
Ngetich
,
G. C.
,
Ireland
,
P. T.
, and
Romero
,
E.
, 2019
, “
Study of Film Cooling Effectiveness on a Double-Walled Effusion-Cooled Turbine Blade in a High-Speed Flow Using Pressure Sensitive Paint
,” ASME
Paper No. GT2019-90545.10.1115/GT2019-9054575.
Wear
,
J. D.
,
Trout
,
A. M.
, and
Smith
,
J. M.
, 1981
, “
Performance of Semi-Transportation-Cooled Liner in High-Temperature-Rise Combustors
,” NASA, Washington, DC, Technical Report No. E-494
.https://ntrs.nasa.gov/citations/1981001254876.
Novikov
,
A. S.
,
Meshkov
,
S. A.
, and
Sabaev
,
G. V.
, 1988
, “
Creation of High Efficiency Turbine Cooled Blades With Structural Electron Beam Coatings
,” Collection of Papers, Electron Beam and Gas-Thermal Coatings
, Paton IEW, Kiev, Ukraine, pp. 87
–96
.77.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
, 2020
, “
Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems
,” ASME J. Turbomach.
,
142
(11
), p. 111003
.10.1115/1.404738478.
Min
,
Z.
,
Parbat
,
S. N.
,
Yang
,
L.
, and
Chyu
,
M. K.
, 2019
, “
Thermal-Fluid and Mechanical Investigations of Additively Manufactured Geometries for Transpiration Cooling
,” ASME
Paper No. GT2019-91583.10.1115/GT2019-9158379.
Langston
,
L. S.
, 1980
, “
Crossflows in a Turbine Cascade Passage
,” J. Eng. Power
,
102
(4
), pp. 866
–874
.10.1115/1.323035280.
Thole
,
K. A.
, and
Knost
,
D. G.
, 2005
, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,” Int. J. Heat Mass Transf
er,
48
(25–26
), pp. 5255
–5269
.10.1016/j.ijheatmasstransfer.2005.07.03681.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
, 2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,” ASME J. Turbomach.
,
133
(4
), p. 041003
.10.1115/1.400295182.
Shiau
,
C.-C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
, 2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,” ASME J. Therm. Sci. Eng. Appl.
,
11
(3
), p. 031012
.10.1115/1.404205783.
Lee
,
C.-P.
, 2001
, “
Turbine Blade Trailing Edge Cooling Openings and Slots
,” U.S. Patent No. US6174135B1
.https://patents.google.com/patent/US6174135B1/en84.
Hill
,
E. C.
,
Liang
,
G. P.
, and
Auxier
,
T.
, 1986
, “
Airfoil Trailing Edge Cooling Arrangement
,” U.S. Patent No. US4601638A
.https://patents.google.com/patent/US460163885.
Cunha
,
F. J.
,
Dahmer
,
M. T.
, and
Chyu
,
M. K.
, 2006
, “
Analysis of Airfoil Trailing Edge Heat Transfer and Its Significance in Thermal-Mechanical Design and Durability
,” ASME J. Turbomach.
,
128
(4
), pp. 738
–746
.10.1115/1.222004786.
Mao
,
X.
, and
Liu
,
B.
, 2017
, “
Numerical Investigation of Tip Clearance Size Effect on the Performance and Tip Leakage Flow in a Dual-Stage Counter-Rotating Axial Compressor
,” Proc. Inst. Mech. Eng., Part G
,
231
(3
), pp. 474
–484
.10.1177/095441001663887887.
Bunker
,
R. S.
, 2006
, “
A Review of Turbine Blade Tip Heat Transfer
,” Ann. N. Y. Acad. Sci.
,
934
(1
), pp. 64
–79
.10.1111/j.1749-6632.2001.tb05843.x88.
Bunker
,
R. S.
, 2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,” J. Propul. Power
,
22
(2
), pp. 271
–285
.10.2514/1.1181889.
Nasir
,
H.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
, 2007
, “
Effect of Tip and Pressure Side Coolant Injection on Heat Transfer Distributions for a Plane and Recessed Tip
,” ASME J. Turbomach.
,
129
(1
), pp. 151
–163
.10.1115/1.236654090.
Xue
,
S.
, and
Ng
,
W. F.
, 2018
, “
Turbine Blade Tip External Cooling Technologies
,” Aerospace
,
5
(3
), p. 90
.10.3390/aerospace503009091.
Gotterbarm
,
M. R.
,
Rausch
,
A. M.
, and
Körner
,
C.
, 2020
, “
Fabrication of Single Crystals Through a Μ-Helix Grain Selection Process During Electron Beam Metal Additive Manufacturing
,” Metals
,
10
(3
), p. 313
.10.3390/met1003031392.
Angel
,
N. M.
, and
Basak
,
A.
, 2020
, “
On the Fabrication of Metallic Single Crystal Turbine Blades With a Commentary on Repair Via Additive Manufacturing
,” J. Manuf. Mater. Process.
,
4
(4
), p. 101
.10.3390/jmmp404010193.
Chakroun
,
W. M.
,
Abdel-Rahman
,
A. A.
, and
Al-Fahed
,
S. F.
, 1998
, “
Heat Transfer Augmentation for Air Jet Impinged on a Rough Surface
,” Appl. Therm. Eng.
,
18
(12
), pp. 1225
–1241
.10.1016/S1359-4311(97)00100-294.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
, 2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,” ASME J. Turbomach.
,
127
(3
), pp. 532
–544
.10.1115/1.186191895.
Snyder
,
J. C.
, and
Thole
,
K. A.
, 2020
, “
Effect of Additive Manufacturing Process Parameters on Turbine Cooling
,” ASME J. Turbomach.
,
142
(5
), p. 051007
.10.1115/1.404645996.
Schroeder
,
R. P.
, and
Thole
,
K. A.
, 2017
, “
Effect of In-Hole Roughness on Film Cooling From a Shaped Hole
,” ASME J. Turbomach.
,
139
(3
), p. 031004
.10.1115/1.403484797.
Salunkhe
,
S.
, and
Rajamani
,
D.
, 2023
, “
Current Trends of Metal Additive Manufacturing in the Defense, Automobile, and Aerospace Industries
,” Advances in Metal Additive Manufacturing
,
S.
Salunkhe
,
S.
Amancio-Filho
, and
J. P.
Davim
, eds.,
Woodhead Publishing
, Cambridge, UK, pp. 147
–160
.98.
Lee
,
S.
,
Hwang
,
W.
, and
Yee
,
K.
, 2018
, “
Robust Film Cooling Hole Shape Optimization Considering Surface Roughness and Partial Hole Blockage
,” ASME
Paper No. GT2018-76424.10.1115/GT2018-7642499.
Schulz
,
U.
,
Leyens
,
C.
,
Fritscher
,
K.
,
Peters
,
M.
,
Saruhan-Brings
,
B.
,
Lavigne
,
O.
,
Dorvaux
,
J.-M.
,
Poulain
,
M.
,
Mévrel
,
R.
, and
Caliez
,
M.
, 2003
, “
Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings
,” Aerosp. Sci. Technol.
,
7
(1
), pp. 73
–80
.10.1016/S1270-9638(02)00003-2100.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Vincent
,
T.
,
Quach
,
S.
, and
Kaufman
,
E.
, 2022
, “
Experimental Investigation Into the Effect of a Ceramic Matrix Composite Surface on Film Cooling
,” ASME J. Turbomach.
,
144
(12
), p. 121006
.10.1115/1.4055332Copyright © 2023 by ASME
You do not currently have access to this content.