Abstract

Hydrogen is being considered as a possible path toward carbon-neutral aviation. There are additional advantages besides its main benefit of CO2-free combustion. One application is to use it for aero engine heat management due to its cryogenic temperature and high heat capacity, including intercooling and exhaust heat recuperation. The focus of this paper is on the design of a compact heat exchanger (HEX) integrated into an intermediate compressor duct (ICD), which could decrease compression work and specific fuel consumption (SFC). This compact heat exchanger features curved fins to promote flow turning and decrease pressure losses compared to more conventional straight fin heat exchangers. Conceptual design and duct shape optimization has been carried out which produced integrated ICD heat exchanger designs with significantly lower air-side total pressure losses compared to their conventional straight fin counterparts, which could improve system level integration and engine performance. A direct outcome of this study is a pressure loss correlation, which can be used in future engine system-level trade studies.

References

1.
European Commission
,
2019
, “
Communication From the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions-The European Green Deal
,” European Commission, Brussels, Belgium, accessed July 10, 2024, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN
2.
Hydrogen Europe
,
2024
, “
Hydrogen Europe
,” Hydrogen Europe, Brussels, Belgium, accessed July 10, 2024, https://hydrogeneurope.eu/clean-h2-partnership-issues-195m-call/
3.
EU Partnership and Horizon Europe
,
2020
, “
European Partnership Under Horizon Europe Clean Aviation
,” EU Partnership and Horizon Europe, Brussels, Belgium, Report.
4.
Adler
,
E. J.
, and
Martins
,
J. R. R. A.
,
2022
, “
Hydrogen-Powered Aircraft: Fundamental Concepts, Key Technologies, and Environmental Impacts
,”
Fuel
,
32
, p.
7
.10.1016/j.paerosci.2023.100922
5.
Brewer
,
G. D.
,
2017
,
Hydrogen Aircraft Technology
,
CRC Press
,
Boca Raton, FL
.
6.
Boggia
,
S.
, and
Jackson
,
A.
,
2002
, “
Some Unconventional Aero Gas Turbines Using Hydrogen Fuel
,”
ASME
Paper No. GT2002-30412.10.1115/GT2002-30412
7.
van Dijk
,
I. P.
,
Rao
,
A. G.
, and
van Buijtene
,
J. P.
,
2009
, “
Stator Cooling & Hydrogen Based Cycle
,”
International Symposium on Air Breathing Engines 2009
, Montreal, QC, Canada, Sept. 7–11, Paper No. 2009-1165.
8.
Svensson
,
F.
, and
Singh
,
R.
,
2004
, “
Effects of Using Hydrogen on Aero Gas Turbine Pollutant Emissions, Performance and Design
,”
ASME
Paper No. GT2004-53349.10.1115/GT2004-53349
9.
Capitao Patrao
,
A.
,
Jonsson
,
I.
,
Xisto
,
C.
,
Lundbladh
,
A.
,
Lejon
,
M.
, and
Grönstedt
,
T.
,
2024
, “
The Heat Transfer Potential of Compressor Vanes on a Hydrogen Fueled Turbofan Engine
,”
Appl. Therm. Eng.
,
236
, p.
121722
.10.1016/j.applthermaleng.2023.121722
10.
Jian
,
D.
, and
Qiuru
,
Z.
,
2020
, “
Key Technologies for Thermodynamic Cycle of Precooled Engines: A Review
,”
Acta Astronaut.
,
177
, pp.
299
312
.10.1016/j.actaastro.2020.07.039
11.
Abedi
,
H.
,
Xisto
,
C.
,
Jonsson
,
I.
,
Grönstedt
,
T.
, and
Rolt
,
A.
,
2022
, “
Preliminary Analysis of Compression System Integrated Heat Management Concepts Using LH2-Based Parametric Gas Turbine Model
,”
Aerospace
,
9
(
4
), p.
216
.10.3390/aerospace9040216
12.
Jonsson
,
I.
,
Xisto
,
C.
,
Abedi
,
H.
,
Grönstedt
,
T.
, and
Lejon
,
M.
,
2020
, “
Feasibility Study of a Radical Vane-Integrated Heat Exchanger for Turbofan Engine Applications
,”
ASME
Paper No. GT2020-15243.10.1115/GT2020-15243
13.
Patrao
,
A. C.
,
Jonsson
,
I.
,
Xisto
,
C.
,
Lundbladh
,
A.
, and
Grönstedt
,
T.
,
2024
, “
Compact Heat Exchangers for Hydrogen-Fueled Aero Engine Intercooling and Recuperation
,”
Appl. Therm. Eng.
,
243
, p.
122538
.10.1016/j.applthermaleng.2024.122538
14.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 2nd ed.,
McGraw-Hill
,
New York
.
15.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
16.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP
,” Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
17.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
18.
Missirlis
,
D.
,
Yakinthos
,
K.
,
Palikaras
,
A.
,
Katheder
,
K.
, and
Goulas
,
A.
,
2005
, “
Experimental and Numerical Investigation of the Flow Field Through a Heat Exchanger for Aero-Engine Applications
,”
Int. J. Heat Fluid Flow
,
26
(
3
), pp.
440
458
.10.1016/j.ijheatfluidflow.2004.10.003
19.
Yakinthos
,
K.
,
Missirlis
,
D.
,
Palikaras
,
A.
,
Storm
,
P.
,
Simon
,
B.
, and
Goulas
,
A.
,
2007
, “
Optimization of the Design of Recuperative Heat Exchangers in the Exhaust Nozzle of an Aero Engine
,”
Appl. Math. Model.
,
31
(
11
), pp.
2524
2541
.10.1016/j.apm.2006.10.008
20.
Zhao
,
X.
, and
Grönstedt
,
T.
,
2015
, “
Conceptual Design of a Two-Pass Cross-Flow Aeroengine Intercooler
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
11
), pp.
2006
2023
.10.1177/0954410014563587
21.
Misirlis
,
D.
,
Vlahostergios
,
Z.
,
Flouros
,
M.
,
Salpingidou
,
C.
,
Donnerhack
,
S.
,
Goulas
,
A.
, and
Yakinthos
,
K.
,
2017
, “
Optimization of Heat Exchangers for Intercooled Recuperated Aero Engines
,”
Aerospace
,
4
(
1
), p.
14
.10.3390/aerospace4010014
22.
Dueñas
,
C. O.
,
Miller
,
R. J.
,
Hodson
,
H. P.
, and
Longley
,
J. P.
,
2007
, “
Effect of Length on Compressor Inter-Stage Duct Performance
,”
ASME
Paper No. GT2007-27752.10.1115/GT2007-27752
23.
Lide
,
D. R.
,
2004
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
24.
Zhao
,
X.
,
Thulin
,
O.
, and
Grönstedt
,
T.
,
2015
, “
First and Second Law Analysis of Intercooled Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021202
.10.1115/1.4031316
You do not currently have access to this content.