Abstract

The information of the degree of blade erosion is vital for the efficient operation of steam turbines. However, it is nearly impossible to directly measure the degree of blade erosion during operation. Moreover, collecting sufficient data of eroded cases for predictive analysis is challenging. Therefore, this paper proposes a blade erosion prediction method using numerical simulation and machine learning. Pressure data of several blade erosion cases are collected from the numerical turbine simulation. The machine learning approach involves training on collected simulation data to predict the degree of erosion for the first-stage stator (1S) and the first-stage rotor blade (1R) from internal pressure data. The proposed erosion prediction model employs a two-step hierarchical approach. First, the proposed model predicts the 1S erosion degree using the k-nearest neighbor (k-NN) regression. Second, the proposed model estimates the 1R erosion degree with linear regression models. These models are tailored for each of the 1S erosion degrees, utilizing pressure data processed through fast Fourier transform (FFT). The evaluation shows that the proposed method achieves the prediction of the 1S erosion with a mean absolute error (MAE) of 0.000693 mm and the 1R erosion with an MAE of 0.458 mm. The evaluation results indicate that the proposed method can accurately capture the degree of turbine blade erosion from internal pressure data. As a result, the proposed method suggests that the erosion prediction method can be effectively used to determine the optimal timing for maintenance, repair, and overhaul (MRO).

References

1.
Saito
,
K.
,
Sakuma
,
A.
, and
Fukuda
,
M.
,
2005
, “
Recent Life Assessment Technology for Existing Steam Turbines
,”
ASME
Paper No. PWR2005-50345.10.1115/PWR2005-50345
2.
Checcacci
,
D.
,
Cosi
,
L.
, and
Sah
,
S. K.
,
2011
, “
Rotor Life Prediction and Improvement for Steam Turbines Under Cyclic Operation
,”
ASME
Paper No. GT2011-45792.10.1115/GT2011-45792
3.
Fentaye
,
A. D.
,
Baheta
,
A. T.
,
Gilani
,
S. I.
, and
Kyprianidis
,
K. G.
,
2019
, “
A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities
,”
Aerospace
,
6
(
7
), p.
83
.10.3390/aerospace6070083
4.
Uemura
,
A.
,
Miyazawa
,
H.
,
Furusawa
,
T.
,
Yamamoto
,
S.
,
Yonezawa
,
K.
, and
Umezawa
,
S.
,
2019
, “
Effect of Blade Secular Change on Unsteady Flows in Middle Pressure First-Stage Steam Turbines
,”
ASME
Paper No. GT2019-90644.10.1115/GT2019-90644
5.
Uhlmann
,
E.
,
Bilz
,
M.
, and
Baumgarten
,
J.
,
2013
, “
MRO—Challenge and Chance for Sustainable Enterprises
,”
Procedia CIRP
,
11
, pp.
239
244
.10.1016/j.procir.2013.07.036
6.
Zhang
,
Z.
,
Liu
,
T.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2021
, “
Water Droplet Erosion Life Prediction Method for Steam Turbine Blade Materials Based on Image Recognition and Machine Learning
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031009
.10.1115/1.4049768
7.
Yamamoto
,
S.
,
Uemura
,
A.
,
Miyazawa
,
H.
,
Furusawa
,
T.
,
Yonezawa
,
K.
,
Umezawa
,
S.
,
Ohmori
,
S.
, and
Suzuki
,
T.
,
2020
, “
A Numerical and Analytical Coupling Method for Predicting the Performance of Intermediate-Pressure Steam Turbines in Operation
,”
Energy
,
198
, p.
117380
.10.1016/j.energy.2020.117380
8.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “
Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,”
Transdisciplinary Perspectives on Complex Systems
,
Springer
,
Berlin
, pp.
85
113
.
9.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
, pp.
346
361
.10.1016/j.jmsy.2020.06.017
10.
Komatsu
,
K.
,
Miyazawa
,
H.
,
Yiran
,
C.
,
Sato
,
M.
,
Furusawa
,
T.
,
Yamamoto
,
S.
, and
Kobayashi
,
H.
,
2021
, “
Detection of Machinery Failure Signs From Big Time-Series Data Obtained by Flow Simulation of Intermediate-Pressure Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011007
.10.1115/1.4052142
11.
Uemura
,
A.
,
Miyazawa
,
H.
,
Furusawa
,
T.
,
Yamamoto
,
S.
,
Yonezawa
,
K.
,
Umezawa
,
S.
, and
Ohmori
,
S.
,
2020
, “
Simulation of Unsteady Flows Through Three-Stage Middle Pressure Steam Turbine in Operation
,”
Mech. Eng. J.
,
7
(
4
), p. 20–00068.10.1299/mej.20-00068
12.
Yonezawa
,
K.
,
Kagayama
,
T.
,
Takayasu
,
M.
,
Nakai
,
G.
,
Sugiyama
,
K.
,
Sugita
,
K.
, and
Umezawa
,
S.
,
2019
, “
Degradation of Aerodynamic Performance of an Intermediate-Pressure Steam Turbine Due to Erosion of Nozzle Guide Vanes and Rotor Blades
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
012602
.10.1115/1.4040566
13.
Komatsu
,
K.
,
Egawa
,
R.
,
Takizawa
,
H.
,
Soga
,
T.
,
Musa
,
A.
, and
Kobayashi
,
H.
,
2014
, “
Exploring System Architectures for Next-Generation CFD Simulations in the Postpeta-Scale Era
,”
J. Fluid Sci. Technol.
,
9
(
5
), p.
JFST0073
.10.1299/jfst.2014jfst0073
14.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
15.
Yoon
,
S.
, and
Jameson
,
A.
,
1988
, “
Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations
,”
AIAA J.
,
26
(
9
), pp.
1025
1026
.10.2514/3.10007
16.
Miyazawa
,
H.
,
Uemura
,
A.
,
Furusawa
,
T.
,
Yamamoto
,
S.
,
Yonezawa
,
K.
,
Umezawa
,
S.
,
Ohmori
,
S.
, and
Suzuki
,
T.
,
2020
, “
Unsteady Flow Simulation Through Stator-Rotor Blade Rows in Intermediate-Pressure Steam Turbines With Cutback Blades
,”
ASME
Paper No. GT2020-14937.10.1115/GT2020-14937
17.
Gropp
,
W. D.
,
Lusk
,
E.
, and
Skjellum
,
A.
,
1999
,
Using MPI: Portable Parallel Programming With the Message-Passing Interface
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
18.
Watanabe
,
O.
,
Hougi
,
Y.
,
Komatsu
,
K.
,
Sato
,
M.
,
Musa
,
A.
, and
Kobayashi
,
H.
,
2019
, “
Optimizing Memory Layout of Hyperplane Ordering for Vector Supercomputer SX-Aurora TSUBASA
,” 2019 IEEE/ACM Workshop on Memory Centric High Performance Computing (
MCHPC
), Denver, CO, Nov. 18,
pp.
25
32
.10.1109/MCHPC49590.2019.00011
19.
Komatsu
,
K.
,
Hougi
,
Y.
,
Sato
,
M.
, and
Kobayashi
,
H.
,
2022
, “
A Hierarchical Wavefront Method for LU-SGS
,”
Comput. Fluids
,
245
, p.
105572
.10.1016/j.compfluid.2022.105572
20.
Komatsu
,
K.
,
Momose
,
S.
,
Isobe
,
Y.
,
Watanabe
,
O.
,
Musa
,
A.
,
Yokokawa
,
M.
,
Aoyama
,
T.
,
Sato
,
M.
, and
Kobayashi
,
H.
,
2018
, “
Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA
,”
SC18: International Conference for High Performance Computing, Networking, Storage and Analysis
, Dallas, TX, Nov. 11–16,
pp.
685
696
.10.1109/SC.2018.00057
21.
Yokokawa
,
M.
,
Nakai
,
A.
,
Komatsu
,
K.
,
Watanabe
,
Y.
,
Masaoka
,
Y.
,
Isobe
,
Y.
, and
Kobayashi
,
H.
,
2020
, “
I/O Performance of the SX-Aurora TSUBASA
,” 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (
IPDPSW
), New Orleans, LA, May 18–22, pp.
27
35
.10.1109/IPDPSW50202.2020.00014
22.
Onodera
,
A.
,
Komatsu
,
K.
,
Fujimoto
,
S.
,
Isobe
,
Y.
,
Sato
,
M.
, and
Kobayashi
,
H.
,
2021
, “
Optimization of the Himeno Benchmark for SX-Aurora TSUBASA
,”
International Symposium on Benchmarking, Measuring and Optimization
, F. Wolf and W. Gao, eds.,
Springer
,
Cham
, pp.
127
143
.10.1007/978-3-030-71058-3_8
23.
Hackeling
,
G.
,
2017
,
Mastering Machine Learning With Scikit-Learn
,
Packt Publishing
,
Birmingham, UK
.
24.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
,
2021
,
Introduction to Linear Regression Analysis
,
Wiley
,
Hoboken, NJ
.
25.
Wong
,
T.-T.
, and
Yeh
,
P.-Y.
,
2020
, “
Reliable Accuracy Estimates From k-Fold Cross Validation
,”
IEEE Trans. Knowl. Data Eng.
,
32
(
8
), pp.
1586
1594
.10.1109/TKDE.2019.2912815
26.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://www.jmlr.org/papers/v12/pedregosa11a.html
You do not currently have access to this content.