Abstract

Gain-scheduled control is widely applied in the aerospace domain, yet the selection of design points for gain-scheduling controllers to ensure stability and robustness throughout the range of scheduling variables remains theoretically unguided, requiring laborious trial-and-error to ensure control performance. Therefore, this paper proposes a theoretical method for design point selection through analysis and optimization processes to meet system stability and robustness requirements. First, the method characterizes the gain-scheduled control system as a polytopic linear parameter varying (LPV) system, wherein the design points of the gain-scheduled control system correspond to the vertices of the polytopic LPV system. Second, the method utilizes linear matrix inequality (LMI) techniques to demonstrate the stability of a polytopic LPV system with a corresponding number of vertices, and by assessing the approximation degree between the polytopic LPV system and the gain-scheduled control system with an identical number of design points, it evaluates and ensures the stability of the latter, thereby establishing the minimal requirements for the number of design points. Finally, the method further refines the number of design points within the gain-scheduled control system to meet additional robustness and performance considerations. A case study on turbofan engine controls validates the proposed method. New design points, selected via stability and robustness analysis, enhance the system's steady-state phase margin and robustness against model uncertainties. Moreover, compared to a v-gap metric-based method, the proposed method exhibits similar performance in terms of stability, robustness, and tracking control; however, it requires fewer design points, resulting in less conservatism.

References

1.
Rugh
,
W. J.
, and
Shamma
,
J. S.
,
2000
, “
Research on Gain Scheduling
,”
Automatica
,
36
(
10
), pp.
1401
1425
.10.1016/S0005-1098(00)00058-3
2.
Rasmussen
,
B. P.
, and
Chang
,
Y. J.
,
2009
, “
Stable Controller Interpolation and Controller Switching for LPV Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
1
), p.
011007
.10.1115/1.4000075
3.
Elkhatem
,
A. S.
, and
Engin
,
S. N.
,
2023
, “
Enhancing Performance and Stability of Gain-Scheduling Control System Using Evolutionary Algorithms: A Case Study on Transport Aircraft
,”
Expert Syst. Appl.
,
213
, p.
118859
.10.1016/j.eswa.2022.118859
4.
Poureh
,
A.
,
Chamani
,
M.
, and
Bahri
,
A.
,
2023
, “
Nonlinear Analysis of Gain Scheduled Controllers for the NREL 5-MW Turbine Blade Pitch Control System
,”
Int. J. Electr. Power Energy Syst.
,
145
, p.
108578
.10.1016/j.ijepes.2022.108578
5.
Simon
,
D. L.
,
Bianco
,
S. J.
, and
Horning
,
M.
,
2023
, “
Integrated Control Design for a Partially Turboelectric Aircraft Propulsion System
,”
ASME J. Eng. Gas Turbines Power
,
146
(
7
), pp.
1
37
.10.1115/1.4063715
6.
Oosterom
,
M.
, and
Babuška
,
R.
,
2006
, “
Design of a Gain-Scheduling Mechanism for Flight Control Laws by Fuzzy Clustering
,”
Control Eng. Pract.
,
14
(
7
), pp.
769
781
.10.1016/j.conengprac.2005.03.012
7.
Shamma
,
J. S.
, and
Athans
,
M.
,
1992
, “
Gain Scheduling: Potential Hazards and Possible Remedies
,”
IEEE Control Syst. Mag.
,
12
(
3
), pp.
101
107
.10.1109/37.165527
8.
Theodoulis
,
S.
, and
Duc
,
G.
,
2009
, “
Missile Autopilot Design: Gain-Scheduling and the Gap Metric
,”
J. Guid., Control, Dyn.
,
32
(
3
), pp.
986
996
.10.2514/1.34756
9.
Ahmadi
,
M.
, and
Haeri
,
M.
,
2017
, “
A New Structured Multimodel Control of Nonlinear Systems by Integrating Stability Margin and Performance
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
9
), p.
091014
.10.1115/1.4036069
10.
Ahmadi
,
M.
, and
Haeri
,
M.
,
2018
, “
Multimodel Control of Nonlinear Systems: An Improved Gap Metric and Stability Margin-Based Method
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
8
), p.
081013
.10.1115/1.4039086
11.
El-Sakkary
,
A.
,
1985
, “
The Gap Metric: Robustness of Stabilization of Feedback Systems
,”
IEEE Trans. Autom. Control
,
30
(
3
), pp.
240
247
.10.1109/TAC.1985.1103926
12.
Won
,
D.-Y.
,
Tahk
,
M.-J.
, and
Jin Kim
,
H.
,
2011
, “
A Multi-Model Approach to Gain-Scheduling Control for Agile Missile Autopilot Design
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
7462
7467
.10.3182/20110828-6-IT-1002.02534
13.
Fleischmann
,
S.
,
Theodoulis
,
S.
,
Laroche
,
E.
,
Wallner
,
E.
, and
Harcaut
,
J. P.
, “
Controller Design Point Selection for Linearized Gain Scheduling
,” Proceedings of 2017 American Control Conference (
ACC
), Seattle, WA, May 24–26, pp.
1574
1579
.10.23919/ACC.2017.7963177
14.
Pakmehr
,
M.
,
Fitzgerald
,
N.
,
Feron
,
E. M.
,
Shamma
,
J. S.
, and
Behbahani
,
A.
,
2013
, “
Gain Scheduled Control of Gas Turbine Engines: Stability and Verification
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031201
.10.1115/1.4025637
15.
Marcos
,
A.
, and
Bennani
,
S.
,
2012
, “
LPV Modeling, Analysis and Design in Space Systems: Rationale, Objectives and Limitations
,”
AIAA
Paper No. 2009-5633.10.2514/6.2009-5633
16.
Zhang
,
H.
,
Wang
,
R.
, and
Wang
,
J.
,
2023
, “
Polytopic LPV Approaches for Intelligent Automotive Systems: State of the Art and Future Challenges
,”
Robust Gain-Scheduled Estimation and Control of Electrified Vehicles Via LPV Technique
,
H.
Zhang
,
R.
Wang
, and
J.
Wang
, eds.,
Springer Nature Singapore
,
Singapore
, pp.
1
49
.10.1007/978-981-19-8509-6_1
17.
Apkarian
,
P.
,
Gahinet
,
P.
, and
Becker
,
G.
,
1995
, “
Self-Scheduled H∞ Control of Linear Parameter-Varying Systems: A Design Example
,”
Automatica
,
31
(
9
), pp.
1251
1261
.10.1016/0005-1098(95)00038-X
18.
Polley
,
J. A.
,
Adibhatla
,
S.
, and
Hoffman
,
P. J.
,
1989
, “
Multivariate Turbofan Engine Control for Full Flight Envelope Operation
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
130
137
.10.1115/1.3240211
19.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
,
American Institute of Aeronautics and Astronautics
,
New York
.
20.
Shen
,
B.
,
Xiao
,
L.
, and
Ye
,
Z.
,
2023
, “
Gain Scheduling Control of Aero-Engine Based on Mixing Polynomial LPV Synthesis
,”
Int. J. Turbo Jet-Engines
,
41
(
1
), pp.
59
70
.10.1515/tjj-2023-0001
21.
Wang
,
J.
,
Zhang
,
W.
, and
Hu
,
Z.
,
2022
,
Model-Based Nonlinear Control of Aeroengines
,
Springer
,
Berlin/Heidelberg, Germany
.
22.
Yadav
,
R.
,
Kapadi
,
Y.
, and
Pashilkar
,
A.
, “
Aero-Thermodynamic Model for Digital Simulation of Turbofan Engine
,”
ASME
Paper No. GT2005-68248.10.1115/GT2005-68248
23.
Martin
,
S.
,
Wallace
,
I.
, and
Bates
,
D. G.
,
2008
, “
Development and Validation of a Civil Aircraft Engine Simulation Model for Advanced Controller Design
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051601
.10.1115/1.2939015
24.
Kurzke
,
J.
, “
How to Create a Performance Model of a Gas Turbine From a Limited Amount of Information
,”
ASME
Paper No. GT2005-68536.10.1115/GT2005-68536
25.
Castiglione
,
T.
,
Perrone
,
D.
,
Strafella
,
L.
,
Ficarella
,
A.
, and
Bova
,
S.
,
2023
, “
Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications
,”
Energies
,
16
(
6
), p.
2634
.10.3390/en16062634
26.
Wong
,
W. K.
, and
Zhou
,
J.
,
2023
, “
Using CVX to Construct Optimal Designs for Biomedical Studies With Multiple Objectives
,”
J. Comput. Graphical Stat.
,
32
(
2
), pp.
744
753
.10.1080/10618600.2022.2104858
27.
Yang
,
S.-B.
,
Wang
,
X.
, and
Sun
,
P.-H.
,
2020
, “
Design of Linear Parameter-Varying Based Sliding Mode Regulator for Limit Protection of Aero-Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
9
), p.
091007
.10.1115/1.4047061
28.
Tang
,
Y.
,
Li
,
Y.
,
Yang
,
W.
,
Zhou
,
W.
,
Huang
,
J.
, and
Cui
,
T.
,
2023
, “
Multi-Input Multi-Output Robust Control of Turbofan Engines Based on Off-Equilibrium Linearization Linear Parameter Varying Model
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111006
.10.1115/1.4063278
You do not currently have access to this content.