Abstract

Hydrogen-enriched natural gas combustion is a hot topic in industrial and academic communities due to the need for carbon emission reduction. However, thermoacoustic instability poses a major challenge for lean combustion development, particularly the higher frequency combustion oscillations. This study investigates the flame response in micromix hydrogen/methane flames within a low to medium frequency range of 50–1200 Hz, revealing a critical mixing ratio. Above this threshold, the flame response is dominated by hydrogen combustion, whereas below it, methane combustion takes precedence. Overall speaking, the hydrogen addition significantly enlarges the low-pass filter limit of the flame transfer function (FTF). Simultaneous OH* chemiluminescence and particle image velocimetry (PIV) experiments demonstrate that the gain is associated with the flame size and the number of acoustic-induced vortices on the flame surface. Higher frequency acoustic forcing leads to flame responses out of phase at different longitudinal positions, resulting in a low global flame response. Hydrogen addition reduces the flame length and enhances the FTF gain at specific frequencies.

References

1.
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2014
, “
Recent Advances in Understanding of Flammability Characteristics of Hydrogen
,”
Prog. Energy Combust. Sci.
,
41
, pp.
1
55
.10.1016/j.pecs.2013.10.002
2.
Cecere
,
D.
,
Giacomazzi
,
E.
, and
Ingenito
,
A.
,
2014
, “
A Review on Hydrogen Industrial Aerospace Applications
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10731
10747
.10.1016/j.ijhydene.2014.04.126
3.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
4.
Lee
,
T.
, and
Kim
,
K. T.
,
2020
, “
Combustion Dynamics of Lean Fully-Premixed Hydrogen-Air Flames in a Mesoscale Multinozzle Array
,”
Combust. Flame
,
218
, pp.
234
246
.10.1016/j.combustflame.2020.04.024
5.
Davis
,
D. W.
,
Therkelsen
,
P. L.
,
Littlejohn
,
D.
, and
Cheng
,
R. K.
,
2013
, “
Effects of Hydrogen on the Thermo-Acoustics Coupling Mechanisms of Low-Swirl Injector Flames in a Model Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3135
3143
.10.1016/j.proci.2012.05.050
6.
John
,
T.
,
Acharya
,
V.
,
Bothien
,
M.
, and
Lieuwen
,
T.
,
2023
, “
Dynamics of Coupled Thermoacoustic Modes: Noise and Frequency Spacing Effects
,”
Combust. Flame
,
252
, p.
112738
.10.1016/j.combustflame.2023.112738
7.
Zinn
,
B. T.
, and
Lieuwen
,
T.
,
2005
, “
Combustion Instabilities: Basic Concepts
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, Vol. 210, American Institute of Aeronautics and Astronautics, Reston, VA, pp.
3
26
.
8.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2021
, “
Acoustic-Convective Interference in Transfer Functions of Methane/Hydrogen and Pure Hydrogen Flames
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121017
.10.1115/1.4051960
9.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
10.
Passarelli
,
M. L.
,
Wabel
,
T. M.
,
Cross
,
A.
,
Venkatesan
,
K.
, and
Steinberg
,
A. M.
,
2021
, “
Cross-Frequency Coupling During Thermoacoustic Oscillations in a Pressurized Aeronautical Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6105
6113
.10.1016/j.proci.2020.06.177
11.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Strakey
,
P. A.
, and
Sidwell
,
T.
,
2009
, “
Laboratory Investigations of a Low-Swirl Injector With H2 and CH4 at Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3001
3009
.10.1016/j.proci.2008.06.141
12.
Lu
,
C.
,
Zhang
,
L.
,
Chen
,
X.
,
Xing
,
C.
,
Liu
,
L.
,
Shi
,
H.
, and
Qiu
,
P.
,
2023
, “
The Effects of Steam Dilution on Flame Structure and Stability for a H2/Air Micromix Burner
,”
J. Energy Inst.
,
107
, p.
101188
.10.1016/j.joei.2023.101188
13.
Cao
,
Z.
,
Lyu
,
Y.
,
Peng
,
J.
,
Qiu
,
P.
,
Liu
,
L.
,
Yang
,
C.
, and
Yu
,
Y.
, et al.,
2021
, “
Experimental Study of Flame Evolution, Frequency and Oscillation Characteristics of Steam Diluted Micro-Mixing Hydrogen Flame
,”
Fuel
,
301
, p.
121078
.10.1016/j.fuel.2021.121078
14.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
15.
Park
,
J.
, and
Lee
,
M. C.
,
2016
, “
Combustion Instability Characteristics of H2/CO/CH4 Syngases and Synthetic Natural Gases in a Partially-Premixed Gas Turbine Combustor: Part I—Frequency and Mode Analysis
,”
Int. J. Hydrogen Energy
,
41
(
18
), pp.
7484
7493
.10.1016/j.ijhydene.2016.02.047
16.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
17.
Wang
,
G.
,
Guiberti
,
T. F.
,
Xia
,
X.
,
Li
,
L.
,
Liu
,
X.
,
Roberts
,
W. L.
, and
Qi
,
F.
,
2021
, “
Decomposition of Swirling Flame Transfer Function in the Complex Space
,”
Combust. Flame
,
228
, pp.
29
41
.10.1016/j.combustflame.2021.01.032
18.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
19.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.10.1016/j.combustflame.2015.06.020
20.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
21.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.10.1016/j.combustflame.2010.04.016
22.
Janus
,
M. C.
,
Richards
,
G. A.
,
Yip
,
M. J.
, and
Robey
,
E. H.
,
1997
, “
Effects of Ambient Conditions and Fuel Composition on Combustion Stability
,”
ASME
Paper No. 97-GT-266.10.1115/97-GT-266
23.
Figura
,
L.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2007
, “
The Effects of Fuel Composition on Flame Structure and Combustion Dynamics in a Lean Premixed Combustor
,” ASME Paper No. GT2007-27298.10.1115/GT2007-27298
24.
Lee
,
T.
, and
Kim
,
K. T.
,
2022
, “
High-Frequency Transverse Combustion Instabilities of Lean-Premixed Multislit Hydrogen-Air Flames
,”
Combust. Flame
,
238
, p.
111899
.10.1016/j.combustflame.2021.111899
25.
Wang
,
M.
,
Zhong
,
Y.
, and
Deng
,
K.
,
2019
, “
Experiment Investigation of the Effects of Hydrogen Content on the Combustion Instability of Methane/Hydrogen Lean Premixed Swirl Flames Under Different Acoustic Frequency Ranges
,”
AIP Adv.
,
9
(
4
), p.
045206
.10.1063/1.5091617
26.
Xu
,
L.
,
Wang
,
G.
,
Mo
,
C.
,
Liu
,
X.
,
Li
,
L.
,
Qi
,
F.
, and
Sun
,
X.
,
2019
, “
Suppression of Combustion Instabilities in a Premixed Swirl Combustor With Acoustic Liner
,”
ASME
Paper No. GT2019-90600.10.1115/GT2019-90600
27.
Liu
,
D.
,
Feng
,
Z.
,
Tian
,
X.
,
Xu
,
L.
,
Gu
,
M.
,
Lin
,
Y.
,
Xia
,
X.
, and
Qi
,
F.
,
2024
, “
Investigation of Flame Response in a Swirling Micromix Hydrogen-Methane Combustor
,”
ASME
Paper No. GT2024-127607.10.1115/GT2024-127607
You do not currently have access to this content.