Abstract

Rotating detonation combustors (RDCs) have gained increased interest for integration with power-generating gas turbines due to the potential to increase thermal efficiency. The unsteady flow field exiting the RDC is fundamentally different compared to traditional swirl-stabilized combustors. Successful integration of RDC with gas turbines will depend on the ability to properly condition the unsteady flow to achieve performance levels comparable to swirl-stabilized combustors. RDC simulations require significant computational resources due to the small spatial and temporal time scales required to resolve the detonation phenomenon. Furthermore, traditional steady-state computational fluid dynamics (CFD) analyses are not possible for RDC simulations. The present study develops and validates a computationally efficient approach for predicting unsteady flow fields exiting the combustor using 2D, transient reacting CFD with periodic boundary conditions in the combustor and a downstream plenum. Validation is performed by comparing the CFD results to various experimental measurements: (i) wave speed obtained from high-speed ion probe and dynamic pressure data, (ii) average wall static pressure measurements, and (iii) time-resolved particle image velocimetry (PIV) at 100 kHz at the RDC exit. Results indicate good agreement between CFD and experiments with respect to velocity field exiting the RDC, detonation wave speed, and static pressure distribution.

References

1.
Rankin
,
B. A.
,
Fotia
,
M. L.
,
Naples
,
A. G.
,
Stevens
,
C. A.
,
Hoke
,
J. L.
,
Kaemming
,
T. A.
,
Theuerkauf
,
S. W.
, and
Schauer
,
F. R.
,
2017
, “
Overview of Performance, Application, and Analysis of Rotating Detonation Engine Technologies
,”
J. Propul. Power
,
33
(
1
), pp.
131
143
.10.2514/1.B36303
2.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
3.
Stephen
,
R. T.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
4.
Zeldovich
,
Y. B.
,
2006
, “
To the Question of Energy Use of Detonation Combustion
,”
J. Propul. Power
,
22
(
3
), pp.
588
592
.10.2514/1.22705
5.
Wintenberger
,
E.
, and
Shepherd
,
J. E.
,
2006
, “
Thermodynamic Cycle Analysis for Propagating Detonations
,”
J. Propul. Power
,
22
(
3
), pp.
694
698
.10.2514/1.12775
6.
Rankin
,
B. A.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2017
, “
Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine
,”
Combust. Flame
,
176
(
0010–2180
), pp.
12
22
.10.1016/j.combustflame.2016.09.020
7.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
8.
Kailasanath
,
K.
,
2011
, “
The Rotating Detonation-Wave Engine Concept: A Brief Status Report
,”
AIAA
Paper No. 2011-580.10.2514/6.2011-580
9.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
10.
Paxson
,
D. E.
, and
Kaemming
,
T.
,
2014
, “
Influence of Unsteadiness on the Analysis of Pressure Gain Combustion Devices
,”
J. Propul. Power
,
30
(
2
), pp.
377
383
.10.2514/1.B34913
11.
Anand
,
V.
,
George
,
A.
,
St
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2016
, “
Investigation of Rotating Detonation Combustor Operation With H2-Air Mixtures
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1281
1292
.10.1016/j.ijhydene.2015.11.041
12.
Zhdan
,
S. A.
, and
Syryamin
,
A. S.
,
2013
, “
Numerical Modeling of Continuous Detonation in Non-Stoichiometric Hydrogen-Oxygen Mixtures
,”
Combust. Explos. Shock Waves
,
49
(
1
), pp.
69
78
.10.1134/S0010508213010085
13.
Ivanov
,
V. S.
,
Frolov
,
S. M.
, and
Dubrovskii
,
A. V.
,
2013
, “
3D Numerical Simulation of Operation Process in Rotating Detonation Engine
,”
Prog. Propul. Phys.
,
4
, pp.
467
488
.10.1051/eucass/201304467
14.
Rankin
,
B. A.
,
Fotia
,
M.
,
Paxson
,
D. E.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2015
, “
Experimental and Numerical Evaluation of Pressure Gain Combustion in a Rotating Detonation Engine
,”
AIAA
Paper No. 2015-0877.10.2514/6.2015-0877
15.
Rankin
,
B. A.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2015
, “
Imaging of OH* Chemiluminescence in an Optically Accessible Nonpremixed Rotating Detonation Engine
,”
AIAA
Paper No. 2015-1604.10.2514/6.2015-1604
16.
Tobias
,
J.
,
Depperschmidt
,
D.
,
Welch
,
C.
,
Miller
,
R.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Daniel
,
R.
,
2019
, “
OH* Chemiluminescence Imaging of the Combustion Products From a Methane-Fueled Rotating Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021021
.10.1115/1.4041143
17.
Chacon
,
F.
, and
Gamba
,
M.
,
2019
, “
Study of Parasitic Combustion in an Optically Accessible Continuous Wave Rotating Detonation Engine
,”
AIAA
Paper No. 2019-0473.10.2514/6.2019-0473
18.
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Stout
,
J. B.
,
2019
, “
Time-Resolved PIV Diagnostics to Measure Flow Field Exiting Methane-Fueled Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-1514.10.2514/6.2019-1514
19.
Goldenstein
,
C. S.
,
Almodóvar
,
C. A.
,
Jeffries
,
J. B.
,
Hanson
,
R. K.
, and
Brophy
,
C. M.
,
2014
, “
High-Bandwidth Scanned-Wavelength-Modulation Spectroscopy Sensors for Temperature and H2O in a Rotating Detonation Engine
,”
Meas. Sci. Technol.
,
25
(
10
), p.
105104
.10.1088/0957-0233/25/10/105104
20.
Cocks
,
P. A.
,
Holley
,
A. T.
, and
Rankin
,
B. A.
,
2016
, “
High Fidelity Simulations of a Non-Premixed Rotating Detonation Engine
,”
AIAA
Paper No. 2016-0125.10.2514/6.2016-0125
21.
Driscoll
,
R.
,
Aghasi
,
P.
,
St George
,
A.
, and
Gutmark
,
E. J.
,
2016
, “
Three-Dimensional, Numerical Investigation of Reactant Injection Variation in a H2/Air Rotating Detonation Engine
,”
Int. J. Hydrogen Energy
,
41
(
9
), pp.
5162
5175
.10.1016/j.ijhydene.2016.01.116
22.
Lietz
,
C.
,
Desai
,
Y.
,
Munipalli
,
R.
,
Schumaker
,
S. A.
, and
Sankaran
,
V.
,
2019
, “
Flowfield Analysis of a 3D Simulation of a Rotating Detonation Rocket Engine
,”
AIAA
Paper No. 2019-1009.10.2514/6.2019-1009
23.
Prakash
,
S.
,
Raman
,
V.
,
Lietz
,
C. F.
,
Hargus
,
W. A.
, and
Schumaker
,
S. A.
,
2021
, “
Numerical Simulation of a Methane-Oxygen Rotating Detonation Rocket Engine
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3777
3786
.10.1016/j.proci.2020.06.288
24.
Sato
,
T.
,
Chacon
,
F.
,
White
,
L.
,
Raman
,
V.
, and
Gamba
,
M.
,
2021
, “
Mixing and Detonation Structure in a Rotating Detonation Engine With an Axial Air Inlet
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3769
3776
.10.1016/j.proci.2020.06.283
25.
Yi
,
T.-H.
,
Turangan
,
C.
,
Lou
,
J.
,
Wolanski
,
P.
, and
Kindracki
,
J.
,
2009
, “
A Three-Dimensional Numerical Study of Rotational Detonation in an Annular Chamber
,”
AIAA
Paper No. 2009-634.10.2514/6.2009-634
26.
Pal
,
P.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2019
, “
Multidimensional Numerical Simulations of Reacting Flow in a Non-Premixed Rotating Detonation Engine
,”
ASME
Paper No. 2019-91931.10.1115/gt2019-91931
27.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2011
, “
Numerical Investigation of the Physics of Rotating-Detonation-Engines
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2195
2202
.10.1016/j.proci.2010.07.050
28.
Zhdan
,
S. A.
,
Bykovskii
,
F. A.
, and
Vedernikov
,
E. F.
,
2007
, “
Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture
,”
Combust. Explos. Shock Waves
,
43
(
4
), pp.
449
459
.10.1007/s10573-007-0061-y
29.
Tobias
,
J.
,
Agrawal
,
A. K.
, and
Paxson
,
D. E.
,
2022
, “
Experimental and Computational Analysis of a Rotating Detonation Combustor
,”
AIAA
Paper No. 2022-1879.10.2514/6.2022-1879
30.
Zhou
,
S.
,
Ma
,
H.
,
Li
,
S.
,
Liu
,
D.
,
Yan
,
Y.
, and
Zhou
,
C.
,
2017
, “
Effects of a Turbine Guide Vane on Hydrogen-Air Rotating Detonation Wave Propagation Characteristics
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20297
20305
.10.1016/j.ijhydene.2017.06.115
31.
Paxson
,
D. E.
, and
Naples
,
A.
,
2017
, “
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
,”
AIAA
Paper No. 2017-1746.10.2514/6.2017-1746
32.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Performance of Axial Turbines Exposed to Large Fluctuations
,”
AIAA
Paper No. 2017-4817.10.2514/6.2017-4817
33.
Lynch
,
S. P.
, and
Boggio
,
M.
,
2022
, “
Computational Analysis of Rotating Detonation Engine Exhaust Interacting With a Turbine Vane
,”
AIAA
Paper No. 2022-1720.10.2514/6.2022-1720
34.
Tobias
,
J. R.
, and
Agrawal
,
A. K.
,
2023
, “
Flow Development in Radial Plane of Rotating Detonation Engine Integrated With Aerospike
,”
J. Propul. Power.
,
39
(
3
), pp.
318
330
.10.2514/1.B38874
35.
Walters
,
I. V.
,
Gejji
,
R. M.
,
Heister
,
S. D.
, and
Slabaugh
,
C. D.
,
2021
, “
Flow and Performance Analysis of a Natural Gas-Air Rotating Detonation Engine With High-Speed Velocimetry
,”
Combust. Flame
,
232
(
0010–2180
), p.
111549
.10.1016/j.combustflame.2021.111549
36.
Rankin
,
B. A.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2014
, “
Periodic Exhaust Flow Through a Converging-Diverging Nozzle Downstream of a Rotating Detonation Engine
,”
AIAA
Paper No.
2014
-
1015
.10.2514/6.2014-1015
37.
Miller
,
R.
,
Tobias
,
J.
,
Depperschmidt
,
D.
,
Bell
,
K.
,
Langner
,
D.
, and
Agrawal
,
A. K.
,
2019
, “
Rainbow Schlieren Imaging of Density Field in the Exhaust Flow of Rotating Detonation Combustion
,”
AIAA
Paper No. 2019-4380.10.2514/6.2019-4380
38.
Chen
,
F.
, and
Liu
,
H.
,
2018
, “
Particle Image Velocimetry for Combustion Measurements: Applications and Developments
,”
Chin. J. Aeronaut.
,
31
(
7
), pp.
1407
1427
.10.1016/j.cja.2018.05.010
39.
Ayegba
,
P. O.
, and
Edomwonyi‐Otu
,
L. C.
,
2020
, “
Turbulence Statistics and Flow Structure in Fluid Flow Using Particle Image Velocimetry Technique: A Review
,”
Eng. Rep.
,
2
(
3
), p.
e12138
.10.1002/eng2.12138
40.
Beresh
,
S. J.
,
2021
, “
Time-Resolved Particle Image Velocimetry
,”
Meas. Sci., Technol.
,
32
(
10
), p.
102003
.10.1088/1361-6501/ac08c5
41.
Journell
,
C. L.
,
Gejji
,
R. M.
,
Walters
,
I. V.
,
Lemcherfi
,
A. I.
,
Slabaugh
,
C. D.
, and
Stout
,
J. B.
,
2020
, “
High-Speed Diagnostics in a Natural Gas–Air Rotating Detonation Engine
,”
J. Propul. Power
,
36
(
4
), pp.
498
507
.10.2514/1.B37740
42.
Welch
,
C.
,
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Lowe
,
S.
,
2018
, “
Experimental Analysis of Wave Propagation in a Methane-Fueled Rotating Detonation Combustor
,”
ASME
Paper No. GT2018-77258.10.1115/GT2018-77258
43.
Boomsma
,
A.
,
Bhattacharya
,
S.
,
Troolin
,
D.
,
Pothos
,
S.
, and
Vlachos
,
P.
,
2016
, “
A Comparative Experimental Evaluation of Uncertainty Estimation Methods for Two-Component PIV
,”
Meas. Sci. Technol.
,
27
(
9
), p.
094006
.10.1088/0957-0233/27/9/094006
44.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
1999
, “
Reduced Kinetics Mechanisms for Ram Accelerator Combustion
,”
J. Propul. Power
,
15
(
4
), pp.
591
600
.10.2514/2.5468
45.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
46.
Nguyen
,
V. B.
,
Teo
,
C. J.
,
Chang
,
P. H.
,
Li
,
J. M.
, and
Khoo
,
B. C.
,
2019
, “
Numerical Investigation of the Liquid-Fueled Pulse Detonation Engine for Different Operating Conditions
,”
Shock Waves
,
29
(
8
), pp.
1205
1225
.10.1007/s00193-019-00898-z
47.
Han
,
X.-P.
,
Zheng
,
Q.
,
Li
,
B.-X.
,
Xiao
,
Q.
,
Xu
,
H.
,
Wang
,
F.
,
Meng
,
H.-L.
,
Feng
,
W.-K.
, and
Weng
,
C.-S.
,
2023
, “
Numerical Simulation of Flow Field Characteristics and the Improvement of Pressure Oscillation of Rotating Detonation Engine
,”
Defence Technol.
,
26
, pp.
191
202
.10.1016/j.dt.2022.06.005
48.
Sun
,
J.
,
Zhou
,
J.
,
Liu
,
S.
, and
Lin
,
Z.
,
2018
, “
Numerical Investigation of a Rotating Detonation Engine Under Premixed/Non-Premixed Conditions
,”
Acta Astronaut.
,
152
, pp.
630
638
.10.1016/j.actaastro.2018.09.012
49.
Subramanian
,
S.
, and
Meadows
,
J.
,
2020
, “
Novel Approach for Computational Modeling of a Non-Premixed Rotating Detonation Engine
,”
J. Propul. Power
,
36
(
4
), pp.
617
631
.10.2514/1.B37719
50.
Raj
,
P.
, and
Meadows
,
J. W.
,
2020
, “
Influence of Fuel Inhomogeneity and Stratification Length Scales on Rotating Detonation Combustor (RDC) Performance
,”
AIAA
Paper No. 2020-3875.10.2514/6.2020-3875
You do not currently have access to this content.