Abstract
Rotating detonation combustors (RDCs) have gained increased interest for integration with power-generating gas turbines due to the potential to increase thermal efficiency. The unsteady flow field exiting the RDC is fundamentally different compared to traditional swirl-stabilized combustors. Successful integration of RDC with gas turbines will depend on the ability to properly condition the unsteady flow to achieve performance levels comparable to swirl-stabilized combustors. RDC simulations require significant computational resources due to the small spatial and temporal time scales required to resolve the detonation phenomenon. Furthermore, traditional steady-state computational fluid dynamics (CFD) analyses are not possible for RDC simulations. The present study develops and validates a computationally efficient approach for predicting unsteady flow fields exiting the combustor using 2D, transient reacting CFD with periodic boundary conditions in the combustor and a downstream plenum. Validation is performed by comparing the CFD results to various experimental measurements: (i) wave speed obtained from high-speed ion probe and dynamic pressure data, (ii) average wall static pressure measurements, and (iii) time-resolved particle image velocimetry (PIV) at 100 kHz at the RDC exit. Results indicate good agreement between CFD and experiments with respect to velocity field exiting the RDC, detonation wave speed, and static pressure distribution.