Abstract

This study presents data-driven modeling of the Reynolds stress tensor and turbulent heat flux vector for improving unsteady Reynolds-averaged Navier–Stokes (RANS) predictions of natural convection problems. While RANS-based calculations are cost-effective, conventional models fail to deliver the requisite predictive precision for high-Rayleigh-number practical engineering flows. To rectify this limitation, a gene-expression programing (GEP)-based machine-learning technique was employed to train novel models using a high-fidelity dataset from a vertical cylinder case with Ra = O(1013), which was generated using LES and validated against experimental data from Mitsubishi Heavy Industries (MHI). The newly developed data-driven closures for Reynolds stress and turbulent heat flux were then used to extend the realizable k-epsilon (RKE) turbulence model. The efficacy of these models was rigorously tested through a full a posteriori approach, involving URANS calculations with the newly constructed closures for the training case and two different testing cases. The results show that for cases with high Ra number (1011), the Nusselt number, temperature profiles, and velocity profiles exhibit significant enhancements due to the application of the GEP-based closures, initially developed using the Ra = O(1013) training case. However, for cases featuring lower Ra numbers, where standard RANS models already perform relatively well, the utilization of the current data-driven closures becomes un-necessary, potentially even leading to reduced simulation accuracy. This investigation carries implications for cost reduction in the design process of thermal engineering applications involving high-Rayleigh-number natural convection flows.

References

1.
Pilkington
,
A.
,
Rosic
,
B.
,
Tanimoto
,
K.
, and
Horie
,
S.
,
2019
, “
Prediction of Natural Convection Heat Transfer in Gas Turbines
,”
Int. J. Heat Mass Transfer
,
141
, pp.
233
244
.10.1016/j.ijheatmasstransfer.2019.06.074
2.
Singh
,
H.
, and
Eames
,
P. C.
,
2011
, “
A Review of Natural Convective Heat Transfer Correlations in Rectangular Cross-Section Cavities and Their Potential Applications to Compound Parabolic Concentrating (CPC) Solar Collector Cavities
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2186
2196
.10.1016/j.applthermaleng.2011.05.032
3.
Vogel
,
J.
,
Felbinger
,
J.
, and
Johnson
,
M.
,
2016
, “
Natural Convection in High Temperature Flat Plate Latent Heat Thermal Energy Storage Systems
,”
Appl. Energy
,
184
, pp.
184
196
.10.1016/j.apenergy.2016.10.001
4.
Bessaih
,
R.
, and
Kadja
,
M.
,
2000
, “
Turbulent Natural Convection Cooling of Electronic Components Mounted on a Vertical Channel
,”
Appl. Thermal Eng.
,
20
(
2
), pp.
141
154
.10.1016/S1359-4311(99)00010-1
5.
Zhang
,
L.
,
Zhou
,
Y.
,
Zhang
,
Y.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G.
,
2015
, “
Natural Convection Heat Transfer in Corium Pools: A Review Work of Experimental Studies
,”
Prog. Nucl. Energy
,
79
, pp.
167
181
.10.1016/j.pnucene.2014.11.021
6.
Choi
,
S.-K.
, and
Kim
,
S.-O.
,
2012
, “
Turbulence Modeling of Natural Convection in Enclosures: A Review
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
283
297
.10.1007/s12206-011-1037-0
7.
Xu
,
X.
,
Ooi
,
A. S.
, and
Sandberg
,
R. D.
,
2022
, “
Reynolds-Averaged Stress and Scalar-Flux Closures Via Symbolic Regression for Vertical Natural Convection
,”
Int. J. Heat Fluid Flow
,
96
, p.
108981
.10.1016/j.ijheatfluidflow.2022.108981
8.
Xu
,
X.
,
Waschkowski
,
F.
,
Ooi
,
A. S.
, and
Sandberg
,
R. D.
,
2022
, “
Towards Robust and Accurate Reynolds-Averaged Closures for Natural Convection Via Multi-Objective CFD-Driven Machine Learning
,”
Int. J. Heat Mass Transfer
,
187
, p.
122557
.10.1016/j.ijheatmasstransfer.2022.122557
9.
Durbin
,
P. A.
,
2018
, “
Some Recent Developments in Turbulence Closure Modeling
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
77
103
.10.1146/annurev-fluid-122316-045020
10.
Sandberg
,
R. D.
, and
Zhao
,
Y.
,
2022
, “
Machine-Learning for Turbulence and Heat-Flux Model Development: A Review of Challenges Associated With Distinct Physical Phenomena and Progress to Date
,”
Int. J. Heat Fluid Flow
,
95
, p.
108983
.10.1016/j.ijheatfluidflow.2022.108983
11.
Clifford
,
C. E.
, and
Kimber
,
M. L.
,
2020
, “
Assessment of RANS and LES Turbulence Models for Natural Convection in a Differentially Heated Square Cavity
,”
Numer. Heat Transfer, Part A
,
78
(
10
), pp.
560
594
.10.1080/10407782.2020.1803592
12.
Kenjereš
,
S.
,
Gunarjo
,
S.
, and
Hanjalić
,
K.
,
2005
, “
Contribution to Elliptic Relaxation Modelling of Turbulent Natural and Mixed Convection
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
569
586
.10.1016/j.ijheatfluidflow.2005.03.007
13.
Ince
,
N. Z.
, and
Launder
,
B. E.
,
1989
, “
On the Computation of Buoyancy-Driven Turbulent Flows in Rectangular Enclosures
,”
Int. J. Heat Fluid Flow
,
10
(
2
), pp.
110
117
.10.1016/0142-727X(89)90003-9
14.
Kenjereš
,
S.
, and
Hanjalić
,
K.
,
1995
, “
Prediction of Turbulent Thermal Convection in Concentric and Eccentric Horizontal Annuli
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
429
439
.10.1016/0142-727X(95)00051-Q
15.
Younis
,
B. A.
,
Speziale
,
C. G.
, and
Clark
,
T. T.
,
2005
, “
A Rational Model for the Turbulent Scalar Fluxes
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
461
(
2054
), pp.
575
594
.10.1098/rspa.2004.1380
16.
Wei
,
Z.
,
Ničeno
,
B.
,
Puragliesi
,
R.
, and
Fogliatto
,
E.
,
2022
, “
Assessment of Turbulent Heat Flux Models for URANS Simulations of Turbulent Buoyant Flows in ROCOM Tests
,”
Nucl. Eng. Technol.
,
54
(
11
), pp.
4359
4372
.10.1016/j.net.2022.07.009
17.
Brenner
,
M.
,
Eldredge
,
J.
, and
Freund
,
J.
,
2019
, “
Perspective on Machine Learning for Advancing Fluid Mechanics
,”
Phys. Rev. Fluids
,
4
(
10
), p.
100501
.10.1103/PhysRevFluids.4.100501
18.
Wu
,
J.-L.
,
Xiao
,
H.
, and
Paterson
,
E.
,
2018
, “
Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
,”
Phys. Rev. Fluids
,
3
(
7
) p.
074602
.10.1103/PhysRevFluids.3.074602
19.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.10.1146/annurev-fluid-010518-040547
20.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow, Turbul. Combust.
,
102
(
4
), pp.
797
848
.10.1007/s10494-019-00013-3
21.
Wang
,
J.-X.
,
Wu
,
J.-L.
, and
Xiao
,
H.
,
2017
, “
Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
) p.
034603
.10.1103/PhysRevFluids.2.034603
22.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade-and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
(
1
), pp.
255
285
.10.1146/annurev-fluid-031221-105530
23.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.10.1017/jfm.2016.615
24.
Weatheritt
,
J.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
Machine Learning for Turbulence Model Development Using a High-Fidelity HPT Cascade Simulation
,”
ASME
Paper No. GT2017-63497.10.1115/GT2017-63497
25.
Milani
,
P. M.
,
Ling
,
J.
,
Saez-Mischlich
,
G.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2018
, “
A Machine Learning Approach for Determining the Turbulent Diffusivity in Film Cooling Flows
,”
ASME J. Turbomach.
,
140
(
2
), p.
021006
.10.1115/1.4038275
26.
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Hutchins
,
N.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2019
, “
Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low-Pressure Turbines
,”
ASME J. Turbomach.
,
141
(
4
), p.
041010
.10.1115/1.4041753
27.
Weatheritt
,
J.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Mizukami
,
S.
, and
Tanimoto
,
K.
,
2020
, “
Data-Driven Scalar-Flux Model Development With Application to Jet in Cross Flow
,”
Int. J. Heat Mass Transfer
,
147
, p.
118931
.10.1016/j.ijheatmasstransfer.2019.118931
28.
Haghiri
,
A.
, and
Sandberg
,
R. D.
,
2020
, “
Large Eddy Simulations of Wall Jets With Coflow for the Study of Turbulent Prandtl Number Variations and Data-Driven Modeling
,”
Phys. Rev. Fluids
,
5
(
6
), p.
064501
.10.1103/PhysRevFluids.5.064501
29.
Ellis
,
C. D.
, and
Xia
,
H.
,
2023
, “
Data-Driven Turbulence Anisotropy in Film and Effusion Cooling Flows
,”
Phys. Fluids
,
35
(
10
), p.
105114
.10.1063/5.0166685
30.
Xu
,
X.
,
Ooi
,
A.
, and
Sandberg
,
R. D.
,
2021
, “
Data-Driven Algebraic Models of the Turbulent Prandtl Number for Buoyancy-Affected Flow Near a Vertical Surface
,”
Int. J. Heat Mass Transfer
,
179
, p.
121737
.10.1016/j.ijheatmasstransfer.2021.121737
31.
Weatheritt
,
J.
, and
Sandberg
,
R.
,
2016
, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress–Strain Relationship
,”
J. Comput. Phys.
,
325
, pp.
22
37
.10.1016/j.jcp.2016.08.015
32.
Weatheritt
,
J.
,
Sandberg
,
R. D.
,
Ling
,
J.
,
Saez
,
G.
, and
Bodart
,
J.
,
2017
, “
A Comparative Study of Contrasting Machine Learning Frameworks Applied to RANS Modeling of Jets in Crossflow
,”
ASME
Paper No. GT2017-63403.10.1115/GT2017-63403
33.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
34.
Wei
,
H.
, and
Chen
,
Y.
,
2019
, “
Assessment of Different Turbulence Models on the Large Scale Internal Heated Water Pool Natural Convection Simulation
,”
Ann. Nucl. Energy
,
131
, pp.
23
38
.10.1016/j.anucene.2019.03.018
35.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
36.
Koza
,
J. R.
,
1994
, “
Genetic Programming as a Means for Programming Computers by Natural Selection
,”
Stat. Comput.
,
4
(
2
), pp.
87
112
.10.1007/BF00175355
37.
Ferreira
,
C.
,
2001
, “
Gene Expression Programming: A New Adaptive Algorithm for Solving Problems
,”
Complex Syst.
,
13
(
2
), pp.
87
129
.10.48550/arXiv.cs/0102027
38.
Pope
,
S. B.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
.10.1017/S0022112075003382
39.
Fabris
,
G.
,
1979
, “
Conditional Sampling Study of the Turbulent Wake of a Cylinder. Part 1
,”
J. Fluid Mech.
,
94
(
4
), pp.
673
709
.10.1017/S0022112079001245
40.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
41.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2012
,
Computational Methods for Fluid Dynamics
,
Springer Science & Business Media
, Berlin.
42.
Issa
,
R.
,
1982
, “
Solution of the Implicit Discretized Fluid Flow Equations by Operator Splitting
,” Mechanical Engineering Report,
Imperial College, London
, UK, Report No. FS/82/15.
43.
Yoshizawa
,
A.
, and
Horiuti
,
K.
,
1985
, “
A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
,
54
(
8
), pp.
2834
2839
.10.1143/JPSJ.54.2834
44.
Funfschilling
,
D.
,
Brown
,
E.
,
Nikolaenko
,
A.
, and
Ahlers
,
G.
,
2005
, “
Heat Transport by Turbulent Rayleigh Bénard Convection in Cylindrical Samples With Aspect Ratio One and Larger
,”
J. Fluid Mech.
,
536
, pp.
145
154
.10.1017/S0022112005005057
45.
Trias
,
F.
,
Gorobets
,
A.
,
Soria
,
M.
, and
Oliva
,
A.
,
2010
, “
Direct Numerical Simulation of a Differentially Heated Cavity of Aspect Ratio 4 With Rayleigh Numbers Up to 1011–Part I: Numerical Methods and Time-Averaged Flow
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
665
673
.10.1016/j.ijheatmasstransfer.2009.10.026
You do not currently have access to this content.