Abstract

The SUbsonic Single Aft eNgine (SUSAN) Electrofan is a National Aeronatics and Space Administration (NASA) concept transport aircraft representative of technology anticipated for a 2040 entry-into-service date. The powertrain consists of a single thrust-producing geared turbofan engine with generators driving a series/parallel partial hybrid power/propulsion system. The architecture includes 16 underwing contrarotating fans, eight on each side. The distributed fans can be used by the flight control system to augment or replace the rudder function. This paper sets up the optimal control problem of setpoint determination for individual wingfans in the distributed propulsion system, accounting for electrical string efficiencies, saturations, and failures. The solution minimizes power consumption while maintaining thrust and torque on the airframe for maneuvering. Additionally, thrust that would have been lost due to temporary fan speed or power saturation is optimally redistributed to maintain overall desired thrust and torque on the aircraft. A simulation of a coordinated turn utilizing the distributed electric propulsion for yaw rate control in a multiple wingfan failure scenario demonstrates the robustness of the powertrain design to failures and helps define its limitations.

References

1.
Chau
,
T.
,
Kenway
,
G.
, and
Kiris
,
C. C.
,
2022
, “
Conceptual Exploration of Aircraft Configurations for the SUSAN Electrofan
,”
AIAA
Paper No. 2022-2181.10.2514/6.2022-2181
2.
Litt
,
J. S.
,
Kratz
,
J. L.
,
Bianco
,
S. B.
,
Sachs-Wetstone
,
J. J.
,
Dever
,
T. P.
,
Buescher
,
H. E.
,
Oden
,
N. C.
, et al.,
2023
, “
Control Architecture for a Concept Aircraft With a Series/Parallel Partial Hybrid Powertrain and Distributed Electric Propulsion
,”
AIAA
Paper No. 2023-1750.10.2514/6.2023-1750
3.
Burcham
,
F. W.
, Jr.
, and
Gilyard
,
G. B.
,
1990
, “
Integrated Flight-Propulsion Control Concepts for Supersonic Transport Airplanes
,”
SAE
Paper No. 901928.10.4271/901928
4.
Fuller
,
J. W.
,
2012
, “
Integrated Flight and Propulsion Control for Loss-of-Control Prevention
,”
AIAA
Paper No. 2012-4896.10.2514/6.2012-4896
5.
Tucker
,
T.
,
1999
,
Touchdown: The Development of Propulsion Controlled Aircraft at NASA Dryden
,
Monographs in Aerospace History #16
, Washington, DC.
6.
Montoya
,
R. J.
,
Howell
,
W. E.
,
Bundick
,
W. T.
,
Ostroff
,
A. J.
,
Hueschen
,
R. M.
, and
Belcastro
,
C. M.
,
1982
, “
Restructurable Controls
,”
NASA Conference Publication 2277
,
Hampton, VA
, Report No.
NASA-CP-2277
.https://ntrs.nasa.gov/citations/19830025625
7.
Chau
,
T.
, and
Duensing
,
J.
,
2024
, “
Conceptual Design of the Hybrid-Electric Subsonic Single Aft Engine (SUSAN) Electrofan Transport Aircraft
,”
AIAA
Paper No. 2024-1326.10.2514/6.2024-1326
8.
Luenberger
,
D. G.
,
1984
,
Linear and Nonlinear Programming
, 2nd ed.,
Addison-Wesley
,
Boston, MA
.
9.
Litt
,
J. S.
,
Sachs-Wetstone
,
J. J.
,
Simon
,
D. L.
,
Sowers
,
T. S.
,
Owen
,
A. K.
,
Bell
,
M. E.
,
Guthrie
,
B. E.
,
Lehan
,
J.
, and
Castro
,
A.
,
2023
, “
Flight Simulator Demonstration and Certification Implications of Powertrain Failure Mitigation in a Partial Turboelectric Aircraft
,”
AIAA
Paper No. 2023-4156.10.2514/6.2023-4156
10.
Litt
,
J. S.
, and
Roulette
,
G.
,
1994
, “
A Method for Exploiting Redundancy to Accommodate Actuator Limits in Multivariable Systems
,”
NASA Technical Memorandum 106859
, Washington, DC, Report No.
NAS 1.15: 106859
.https://ntrs.nasa.gov/api/citations/19960012194/downloads/19960012194.pdf
11.
Litt
,
J. S.
,
Hickman
,
A.
, and
Guo
,
T.-H.
,
1996
, “
A New Technique for Compensating Joint Limits in a Robot Manipulator
,”
NASA Technical Memorandum 107330
, Washington, DC, Report No.
ARL-TR-1101
.https://ntrs.nasa.gov/api/citations/19970020204/downloads/19970020204.pdf
12.
Lee
,
B. J.
, and
Liou
,
M.-F.
,
2022
, “
Conceptual Design of Propulsors for the SUSAN Electro-Fan Aircraft
,”
AIAA
Paper No. 2022-2305.10.2514/6.2022-2305
13.
Jansen
,
R. H.
,
Kiris
,
C. C.
,
Chau
,
T.
,
Kenway
,
G. K. W.
,
Machado
,
L. M.
,
Duensing
,
J. C.
,
Mirhashemi
,
A.
, et al.,
2022
, “
Subsonic Single Aft Engine (SUSAN) Transport Aircraft Concept and Trade Space Exploration
,”
AIAA
Paper No. 2022-2179.10.2514/6.2022-2179
14.
Machado
,
L.
,
Chau
,
T.
,
Kenway
,
G. K.
,
Duensing
,
D. C.
, and
Kiris
,
C. C.
,
2023
, “
Preliminary Assessment of a Distributed Electric Propulsion System for the SUSAN Electrofan
,”
AIAA
Paper No. 2023-1748.10.2514/6.2023-1748
15.
Machado
,
L. M.
,
Chau
,
T.
, and
Duensing
,
J. C.
,
2024
, “
Toward the Development of an Underwing Boundary Layer Ingesting Distributed Propulsion System for the SUSAN Electrofan
,”
AIAA
Paper No. 2024-1327.10.2514/6.2024-1327
16.
Raymer
,
D. P.
,
1989
,
Aircraft Design: A Conceptual Approach
,
AIAA
,
Reston, VA
.
17.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance, Second Edition
,
Blackwell Science and ASME Press
,
Fairfield, NJ
.
18.
Torenbeek
,
E.
,
1982
,
Synthesis of Subsonic Aircraft Design
,
Delft University Press
,
Delft, The Netherlands
.
19.
Haglage
,
J. M.
,
Dever
,
T. P.
,
Jansen
,
R. H.
, and
Lewis
,
M. A.
,
2022
, “
Electrical System Trade Study for SUSAN Electrofan Concept Vehicle
,”
AIAA
Paper No. 2022-2183.10.2514/6.2022-2183
20.
Chapman
,
J. W.
,
Kratz
,
J. L.
,
Dever
,
T. P.
,
Mirhasemi
,
A.
,
Stalcup
,
E. J.
,
Sixel
,
W. R.
,
Woodworth
,
A. A.
, and
Jansen
,
R. H.
,
2023
, “
Update on SUSAN Concept Vehicle Power and Propulsion System
,”
AIAA
Paper No. 2023-1749.10.2514/6.2023-1749
21.
Sachs-Wetstone
,
J. J.
,
Litt
,
J. S.
,
Kratz
,
J. L.
, and
Buescher
,
H. E.
,
2024
, “
SUbsonic Single Aft eNgine (SUSAN) Power/Propulsion System Control Architecture Updates
,”
AIAA
Paper No. 2024-1330.10.2514/6.2024-1330
22.
Ogden
,
N. C.
, and
Patterson
,
A.
,
2023
, “
A Framework for Evaluating Distributed Electric Propulsion on the SUSAN Electrofan Aircraft
,” Washington, DC, Report No.
NASA/TM-20230009523
.https://ntrs.nasa.gov/api/citations/20230009523/downloads/NASA-TM-20230009523.pdf
You do not currently have access to this content.