Abstract

This work presents a detailed techno-economic evaluation of the solid oxide semiclosed CO2 (SOS-CO2) cycle, a hybrid semiclosed cycle with solid oxide fuel cells (SOFC) developed by Politecnico di Milano. for different plant sizes, ranging from large utility plants (400 MWel) to industrial applications (50 MWel). The analysis includes the design and sizing of all the cycle components, including specific design optimization models for the most critical cycle components such as the regenerative heat exchanger and the turbine. Results are compared with the performance of the Allam cycle, an oxy-combustion cycle with higher technology readiness level (TRL). The results show that the SOS-CO2 cycle maintains high efficiency over the whole size range thanks to the modularity of the fuel cell and the regenerator, which counterbalances the decrease in turbomachine efficiency at small sizes. For the utility scale plant, despite its higher specific investment cost (3761 €/kW versus 2490€/kW), the SOS-CO2 cycle appears to be competitive with the Allam cycle in terms of cost of electricity (COE) (128.4 €/MWh and 127.8 €/MWh of the Allam cycle) thanks to its higher efficiency (68.9% versus 53.1%). At smaller sizes, the higher efficiency and the lower dependance on the economies of scale make the SOS-CO2 more economically advantageous: for the 50 MWel plant, the cost of electricity of the SOS-CO2 is 175.8 €/MWh versus 205.8 €/MWh of the Allam cycle.

References

1.
Cao
,
C.
,
Liu
,
H.
,
Hou
,
Z.
,
Mehmood
,
F.
,
Liao
,
J.
, and
Feng
,
W.
,
2020
, “
A Review of CO2 Storage in View of Safety and Cost-Effectiveness
,”
Energies
,
13
(
3
), p.
600
.10.3390/en13030600
2.
International Energy Agency (IEA)
,
2020
, “
Energy Technology Perspectives 2020 - Special Report on Carbon Capture Utilisation and Storage
,”
OECD Publishing
,
Paris, France
.10.1787/d07136f0-en
3.
Wang
,
M.
,
Joel
,
A. S.
,
Ramshaw
,
C.
,
Eimer
,
D.
, and
Musa
,
N. M.
,
2015
, “
Process Intensification for Post-Combustion CO2 Capture With Chemical Absorption: A Critical Review
,”
Appl. Energy
,
158
, pp.
275
291
.10.1016/j.apenergy.2015.08.083
4.
Feron
,
P. H. M.
,
Cousins
,
A.
,
Jiang
,
K.
,
Zhai
,
R.
, and
Garcia
,
M.
,
2020
, “
An Update of the Benchmark Post-Combustion CO2-Capture Technology
,”
Fuel
,
273
, p.
117776
.10.1016/j.fuel.2020.117776
5.
Kheirinik
,
M.
,
Ahmed
,
S.
, and
Rahmanian
,
N.
,
2021
, “
Comparative Techno-Economic Analysis of Carbon Capture Processes: Pre-Combustion, Post-Combustion, and Oxy-Fuel Combustion Operations
,”
Sustainability
,
13
(
24
), p.
13567
.10.3390/su132413567
6.
Riesch
,
H.
,
Oltra
,
C.
,
Lis
,
A.
,
Upham
,
P.
, and
Pol
,
M.
,
2013
, “
Internet-Based Public Debate of CCS: Lessons From Online Focus Groups in Poland and Spain
,”
Energy Policy
,
56
, pp.
693
702
.10.1016/j.enpol.2013.01.029
7.
International Energy Agency Greenhouse Gas R&D Programme (IEAGHG)
,
2015
, “
Oxy-Combustion Turbine Power Plants
,” IEAGHG,
Cheltenham, UK
, accessed Oct. 1, 2024, https://ieaghg.org/publications/oxy-combustion-turbines/
8.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
,
2013
, “
High Efficiency and Low Cost of Electricity Generation From Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Proc.
,
37
, pp.
1135
1149
.10.1016/j.egypro.2013.05.211
9.
Allam
,
R. J.
,
Fetvedt
,
J. E.
,
Forrest
,
B. A.
, and
Freed
,
D. A.
,
2014
, “
The OXY-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952.10.1115/GT2014-26952
10.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Proc.
,
114
, pp.
5948
5966
.10.1016/j.egypro.2017.03.1731
11.
Allam
,
R. J.
,
Palmer
,
M. R.
, and
Brown
,
G. W.
,
2010
, “
System and Method for High Efficiency Power Generation Using a Carbon Dioxide Circulating Working Fluid
,” U.S. Patent No. 20110179799A1.
12.
NETPOWER
,
2022
, “
NET Power Website
,” Netpower, Durham, NC, accessed Sept. 30, 2024, https://netpower.com/news/
13.
Scaccabarozzi
,
R.
,
Gatti
,
M.
, and
Martelli
,
E.
,
2016
, “
Thermodynamic Analysis and Numerical Optimization of the NET Power Oxy-Combustion Cycle
,”
Appl. Energy
,
178
, pp.
505
526
.10.1016/j.apenergy.2016.06.060
14.
Scaccabarozzi
,
R.
,
Gatti
,
M.
, and
Martelli
,
E.
,
2017
, “
Thermodynamic Optimization and Part-Load Analysis of the NET Power Cycle
,”
Energy Proc.
,
114
, pp.
551
560
.10.1016/j.egypro.2017.03.1197
15.
Zaryab
,
S. A.
,
Scaccabarozzi
,
R.
, and
Martelli
,
E.
,
2020
, “
Advanced Part-Load Control Strategies for the Allam Cycle
,”
Appl. Therm. Eng.
,
168
, p.
114822
.10.1016/j.applthermaleng.2019.114822
16.
Sasaki
,
T.
,
Itoh
,
M.
,
Maeda
,
H.
,
Tominaga
,
J.
,
Saito
,
D.
, and
Niizeki
,
Y.
,
2017
, “
Development of Turbine and Combustor for a Semi-Closed Recuperated Brayton Cycle of Supercritical Carbon Dioxide
,”
ASME
Paper No. POWER-ICOPE2017-3419.10.1115/POWER-ICOPE2017-3419
17.
Scaccabarozzi
,
R.
,
Martelli
,
E.
,
Gatti
,
M.
,
Chiesa
,
P.
,
Pini
,
M.
, and
De Servi
,
C. M.
,
2019
, “
Conceptual Thermo-Fluid Dynamic Design of the Cooled Supercritical CO2 Turbine for the Allam Cycle
,”
Energy Proceedings Volume 5: Proceedings of 11th International Conference on Applied Energy, Part 4
, Västerås, Sweden, Aug. 12–15, pp.
1
8
.10.46855/energy-proceedings-4334
18.
Risimini
,
G.
,
Martinelli
,
M.
,
Chiesa
,
P.
, and
Martelli
,
E.
,
2022
, “
Performance Optimization of Semi-Closed Oxy-Combustion Combined Cycle (SCOC-CC) for Current and Future Blade Materials
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p.
011008
.10.1115/1.4055790
19.
Martelli
,
E.
,
Campanari
,
S.
,
Gatti
,
M.
, and
Scaccabarozzi
,
R.
,
2019
, “
Sistema di conversione di energia
,” Patent No. 102019000024162.
20.
Scaccabarozzi
,
R.
,
Gatti
,
M.
,
Campanari
,
S.
, and
Martelli
,
E.
,
2021
, “
Solid Oxide Semi-Closed CO2 Cycle: A Hybrid Power Cycle With 75% Net Efficiency and Zero Emissions
,”
Appl. Energy
,
290
, p.
116711
.10.1016/j.apenergy.2021.116711
21.
Martinelli
,
M.
,
Scaccabarozzi
,
R.
,
Gatti
,
M.
,
Campanari
,
S.
, and
Martelli
,
E.
,
2024
, “
Techno-Economic Analysis of the Solid Oxide Semi-Closed CO2 Cycle and Comparison With Other Power Generation Cycles With CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011016
.10.1115/1.4063740
22.
Wang
,
H.
,
Yu
,
Z.
,
Wang
,
D.
,
Li
,
G.
, and
Xu
,
G.
,
2021
, “
Energy, Exergetic and Economic Analysis and Multi-Objective Optimization of Atmospheric and Pressurized SOFC Based Trigeneration Systems,” Energy
,”
Convers. Manage.
,
239
, p.
114183
.10.1016/j.enconman.2021.114183
23.
Kobayashi
,
Y.
,
Ando
,
Y.
,
Kabata
,
T.
,
Nishiura
,
M.
,
Tomida
,
K.
, and
Matake
,
N.
,
2011
, “
Extremely High-Efficiency Thermal Power System-Solid Oxide Fuel Cell (SOFC) Triple Combined-Cycle System
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
48
(
3
), pp.
9
15
.https://www.mhi.co.jp/technology/review/pdf/e483/e483009.pdf
24.
Vora
,
S. D.
,
2013
, “
SECA Program Overview and Status
,”
ECS Trans.
,
57
(
1
), pp.
11
19
.10.1149/05701.0011ecst
25.
Zeng
,
Z.
,
Qian
,
Y.
,
Zhang
,
Y.
,
Hao
,
C.
,
Dan
,
D.
, and
Zhuge
,
W.
,
2020
, “
A Review of Heat Transfer and Thermal Management Methods for Temperature Gradient Reduction in Solid Oxide Fuel Cell (SOFC) Stacks
,”
Appl. Energy
,
280
, p.
115899
.10.1016/j.apenergy.2020.115899
26.
EG&G Technical Services Inc. U.S. Department of Energy
,
2016
, “
Fuel Cell Handbook
,” Seventh edition,
Lulu
.
27.
Doyon
,
J.
,
2007
, “
SECA SOFC Programs at Fuel Cell Energy
,”
8th Annual SECA Workshop
,
San Antonio, TX
, Aug. 7–9.https://netl.doe.gov/sites/default/files/event-proceedings/2007/seca/SECA-SOFC-Programs-at-Fuel-Cell-Eng---Joel-Doyon--FuelCell-E.pdf
28.
Martelli
,
E.
,
Girardi
,
M.
, and
Chiesa
,
P.
,
2022
, “
Breaking 70% Net Electric Combined Cycle Efficiency With CMC Gas Turbine Blades
,”
ASME
Paper No. GT2022-81118.10.1115/GT2022-81118
29.
Higginbotham
,
P.
,
White
,
V.
,
Fogash
,
K.
, and
Guvelioglu
,
G.
,
2011
, “
Oxygen Supply for Oxyfuel CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
5
, pp.
S194
S203
.10.1016/j.ijggc.2011.03.007
30.
White
,
V.
, and
Allam
,
R. J.
,
2008
, “
Purification of Carbon Dioxide
,” U.S. Patent No. 20080173585A1.
31.
Strube
,
R.
, and
Manfrida
,
G.
,
2011
, “
CO2 Capture in Coal-Fired Power plants-Impact on Plant Performance
,”
Int. J. Greenhouse Gas Control
,
5
(
4
), pp.
710
726
.10.1016/j.ijggc.2011.01.008
32.
Sala
,
L.
,
Zaryab
,
S. A.
,
Chiesa
,
P.
, and
Martelli
,
E.
,
2024
, “
Comparison and Optimization of CO2 Purification Units for CCS Applications
,”
Int. J. Greenhouse Gas Control
,
136
, p.
104193
.10.1016/j.ijggc.2024.104193
33.
aspentech
,
2024
, “
Aspen Technology, Inc
,” aspentech, Bedford, MA, accessed Sept. 30, 2024, https://www.aspentech.com/en
34.
Span
,
R.
,
Gernert
,
J.
, and
Jäger
,
A.
,
2013
, “
Accurate Thermodynamic-Property Models for CO2-Rich Mixtures
,”
Energy Proc.
,
37
, pp.
2914
2922
.10.1016/j.egypro.2013.06.177
35.
Wagner
,
P. H.
,
Wuillemin
,
Z.
,
Constantin
,
D.
,
Diethelm
,
S.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2020
, “
Experimental Characterization of a Solid Oxide Fuel Cell Coupled to a Steam-Driven Micro Anode Off-Gas Recirculation Fan
,”
Appl. Energy
,
262
, p.
114219
.10.1016/j.apenergy.2019.114219
36.
Borglum
,
B. P.
, and
Ghezel-Ayagh
,
H.
,
2015
, “
Development of Solid Oxide Fuel Cells at Versa Power Systems and FuelCell Energy
,”
ECS Trans.
,
68
(
1
), pp.
89
94
.10.1149/06801.0089ecst
37.
Pagliari
,
M.
,
Montinaro
,
D.
,
Martelli
,
E.
,
Campanari
,
S.
, and
Donazzi
,
A.
,
2023
, “
Experimental Analysis of the Effect of Cathodic CO2 Supply to Industrial Solid Oxide Fuel Cells
,”
ECS Trans.
,
111
(
6
), pp.
673
680
.10.1149/11106.0673ecst
38.
Gibson
,
S. M.
,
2014
, “
Oxygen Plants for Gasification
,”
New Horizons Gasif
, Air Products, Allentown, PA, pp.
1
9
.
39.
Romei
,
A.
,
Gaetani
,
P.
,
Giostri
,
A.
, and
Persico
,
G.
,
2020
, “
The Role of Turbomachinery Performance in the Optimization of Supercritical Carbon Dioxide Power Systems
,”
ASME J. Turbomach.
,
142
(
7
), p.
071001
.10.1115/1.4046182
40.
Baker Huges
,
2022
, “
Baker Huges Website
,” Baker Huges, Houston, TX, accessed Sept. 30, 2024, https://www.bakerhughes.com/
41.
SIEMENS
,
2022
, “
Siemens Website
,” Siemens, Munich, Germany, accessed Sept. 30, 2024, https://www.siemens.com/global/en.html
42.
BOLDROCCHI
, “
Boldrocchi, Blowers & Compressors
,” Boldrocchi, Biassono, Italy, accessed Sept. 30, 2024, http://www.boldrocchigroup.com/blowers/
43.
Dipierro
,
V.
,
Martinelli
,
M.
,
Persico
,
G.
, and
Martelli
,
E.
,
2022
, “
Mean-Line Design and Optimization of Axial-Flow Turbines Based on Mixed Integer Nonlinear Programming
,”
ASME
Paper No. GT2022-82688.10.1115/GT2022-82688
44.
ABB
,
2022
, “
ABB Group Website
,” ABB, Zurich, Switzerland, accessed Sept. 30, 2024, https://global.abb/group/en
45.
Morgan
,
H.
,
Large
,
D. J.
,
Bateman
,
K.
,
Hanstock
,
D.
, and
Gregory
,
S. P.
,
2021
, “
Potential Impacts of Oxygen Impurities in Carbon Capture and Storage on Microbial Community Composition and Activity
,”
Int. J. Greenhouse Gas Control
,
111
, p.
103479
.10.1016/j.ijggc.2021.103479
46.
El-Masri
,
M. A.
,
1986
, “
On Thermodynamics of Gas-Turbine Cycles: Part 2—A Model for Expansion in Cooled Turbines
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
151
159
.10.1115/1.3239862
47.
Chiesa
,
P.
, and
Macchi
,
E.
,
2004
, “
A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
770
785
.10.1115/1.1771684
48.
Gas Turbine World
,
2021
,
Gas Turbine World 2021 GTW Handbook
, Vol.
36
,
Pequot Publication
, Essex, CT.
49.
Elsido
,
C.
,
Martelli
,
E.
, and
Grossmann
,
I. E.
,
2021
, “
Multiperiod Optimization of Heat Exchanger Networks With Integrated Thermodynamic Cycles and Thermal Storages
,”
Comput. Chem. Eng.
,
149
, p.
107293
.10.1016/j.compchemeng.2021.107293
50.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
, Hoboken, NJ.
51.
Shiferaw
,
D.
,
Carrero
,
J. M.
, and
Le Pierres
,
R.
,
2016
, “
Economic Analysis of SCO2 Cycles With PCHE Recuperator Design Optimisation
,”
Proceedings of 5th International Symposium-Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, pp.
1
13
.https://sco2symposium.com/papers2016/HeatExchanger/053paper.pdf
52.
Martelli
,
E.
,
Kreutz
,
T.
, and
Consonni
,
S.
,
2009
, “
Comparison of Coal IGCC With and Without CO2 Capture and Storage: Shell Gasification With Standard vs. partial Water Quench
,”
Energy Proc.
,
1
(
1
), pp.
607
614
.10.1016/j.egypro.2009.01.080
53.
Elsido
,
C.
,
Martelli
,
E.
, and
Kreutz
,
T.
,
2019
, “
Heat Integration and Heat Recovery Steam Cycle Optimization for a Low-Carbon Lignite/Biomass-to-Jet Fuel Demonstration Project
,”
Appl. Energy
,
239
, pp.
1322
1342
.10.1016/j.apenergy.2019.01.221
54.
Battelle Memorial Institute
,
2016
, “
Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications
,” Battelle Memorial Institute, Columbus, OH.https://www.energy.gov/sites/prod/files/2016/07/f33/fcto_battelle_mfg_cost_analysis_pp_chp_fc_systems.pdf
55.
Chemical Engineering
,
2023
, “
The Chemical Engineering Plant Cost Index, Chemical Engineering
,” Chemical Engineering, New York, accessed Sept. 30, 2024, https://www.chemengonline.com/pci-home
56.
Market Observatory for Energy
,
2021
, “
Quarterly Report on European Gas Markets
,” European Commission, Brussels, Belgium, accessed Sept. 30, 2024, https://energy.ec.europa.eu/data-and-analysis/market-analysis_en
57.
ICE
,
2022
, “
ICE Website
,” ICE, Atlanta, GA, accessed Sept. 30, 2024, https://www.theice.com/index
58.
Smith
,
E.
,
Morris
,
J.
,
Kheshgi
,
H.
,
Teletzke
,
G.
,
Herzog
,
H.
, and
Paltsev
,
S.
,
2021
, “
The Cost of CO2 Transport and Storage in Global Integrated Assessment Modeling
,”
Int. J. Greenhouse Gas Control
,
109
, p.
103367
.10.1016/j.ijggc.2021.103367
59.
Li
,
Z.
,
Zhang
,
X.
,
He
,
X.
,
Wu
,
G.
,
Tian
,
S.
,
Zhang
,
D.
,
Zhang
,
Q.
, and
Liu
,
Y.
,
2022
, “
Comparative Analysis of Thermal Economy of Two SOFC-GT-ST Triple Hybrid Power Systems With Carbon Capture and LNG Cold Energy Utilization
,”
Energy Convers. Manage.
,
256
, p.
115385
.10.1016/j.enconman.2022.115385
60.
Adams
,
T. A.
, II.
, and
Barton
,
P. I.
,
2010
, “
High-Efficiency Power Production From Natural Gas With Carbon Capture
,”
J. Power Sources
,
195
(
7
), pp.
1971
1983
.10.1016/j.jpowsour.2009.10.046
61.
Alpegiani
,
F.
,
Zelaschi
,
A.
,
Cammarata
,
A.
,
Chiesa
,
P.
,
Campanari
,
S.
, and
Martelli
,
E.
,
2023
, “
Ultra High Efficient Power Generation With SOFC-Gas Turbine Systems: Different Options for 80%+ Efficiency Power Cycles
,”
ASME
Paper No. GT2023-103211.10.1115/GT2023-103211
62.
Yu
,
H.
,
Wang
,
L.
,
Van Herle
,
J.
, and
Pina
,
E. A.
,
2023
, “
Waste2Watts: Techno-Economic Feasibility of Biogas-Fed SOFC Power System Integrated With Biogas Cleaning Unit and Carbon Capture Technologies
,”
ECS Trans.
,
111
(
6
), pp.
2037
2047
.10.1149/11106.2037ecst
You do not currently have access to this content.