Abstract

Manufacturing tolerance uncertainties in gas turbine aero-engines are unavoidable, which adversely influence the thrust control performance of newly produced aero-engines. However, classic sample-based uncertainty quantification approaches are usually computationally intensive. In this paper, to consider the uncertainties in the thrust control design phase in advance, a polynomial chaos expansion-based uncertainty model (PCEUM) using a sparse regression method is proposed to get the accurate probability distribution of thrust regulation performance and other concerned engine variables at a decreased computational burden. In PCEUM, interested engine parameters are initially expressed as linear combinations of several orthogonal polynomials, whose weighting coefficients are solved by a sparse-regression-based method, i.e., orthogonal matching pursuit (OMP). Meanwhile, two classic sample-based uncertainty quantification approaches, (i.e., Monte Carlo simulations (MCS), Latin hypercube sampling (LHS)) and least angle regression (LARS) are set as benchmarks. Numerical simulations on a verified large turbofan engine model at the takeoff state on a desktop computer show that PCEUM costs only 47.06 s at 200 samples to obtain converged probability distributions for interested engine parameters whose errors of mean and standard deviation are within 0.01% and 1%, respectively, compared to MCS at 100,000 samples. Meanwhile, compared to the latter three methods, PCEUM saves 94.5%, 81.2%, and 13.1% of the simulation time, accordingly. Hence, both the accuracy and speed of the proposed model are guaranteed for the uncertainty assessment of thrust regulation, which provides a promising solution for both conventional and future aero-propulsion system.

References

1.
Adibhatla
,
S.
,
Ding
,
J.
,
Garg
,
S.
,
Griffith
,
S.
,
Karnofski
,
K.
,
Payne
,
N.
,
Simon
,
D. L.
, and
Wood
,
B.
,
2018
, “
Propulsion Control Technology Development Roadmaps to Address NASA Aeronautics Research Mission Goals for Thrusts 3a and 4
,”
AIAA
Paper No. 2018-4732.10.2514/6.2018-4732
2.
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2019
, “
Meta-Heuristic Global Optimization Algorithms for Aircraft Engines Modelling and Controller Design; A Review, Research Challenges, and Exploring the Future
,”
Prog. Aerosp. Sci.
,
104
, pp.
40
53
.10.1016/j.paerosci.2018.11.003
3.
Zheng
,
X.
, and
Wang
,
J.
,
2020
, “
Review of Geometric Uncertainty Quantification in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
070801
.10.1115/1.4047179
4.
Chen
,
Y.-Z.
,
Zhao
,
X.-D.
,
Xiang
,
H.-C.
, and
Tsoutsanis
,
E.
,
2021
, “
A Sequential Model-Based Approach for Gas Turbine Performance Diagnostics
,”
Energy
,
220
, p.
119657
.10.1016/j.energy.2020.119657
5.
Chen
,
Y.-Z.
,
Tsoutsanis
,
E.
,
Xiang
,
H.-C.
,
Li
,
Y.-G.
, and
Zhao
,
J.-J.
,
2022
, “
A Dynamic Performance Diagnostic Method Applied to Hydrogen Powered Aero Engines Operating Under Transient Conditions
,”
Appl. Energy
,
317
, p.
119148
.10.1016/j.apenergy.2022.119148
6.
Chen
,
Y.-Z.
,
Tsoutsanis
,
E.
,
Wang
,
C.
, and
Gou
,
L.-F.
,
2023
, “
A Time-Series Turbofan Engine Successive Fault Diagnosis Under Both Steady-State and Dynamic Conditions
,”
Energy
,
263
, p.
125848
.10.1016/j.energy.2022.125848
7.
Kyprianidis
,
K.
,
2019
,
On Gas Turbine Conceptual Design
,
Cranfield University
, Cranfield, Bedfordshire, UK.
8.
Zhang
,
J.
,
Tang
,
H.
, and
Chen
,
M.
,
2021
, “
Robust Design of an Adaptive Cycle Engine Performance Under Component Performance Uncertainty
,”
Aerosp. Sci. Technol.
,
113
, p.
106704
.10.1016/j.ast.2021.106704
9.
Montomoli
,
F.
,
Carnevale
,
M.
,
Antonio
,
D.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer
, Berlin, Germany.
10.
Harrison
,
R. L.
,
Granja
,
C.
, and
Claude
,
L.
,
2010
, “
Introduction to Monte Carlo Simulation
,”
AIP Conf. Proc.
, 1204, pp.
17
21
.10.1063/1.3295638
11.
Wei
,
Z.
, and
Zhang
,
S.
,
2023
, “
Thrust Command Scheduling for Uncertainty-Tolerant Control of Gas Turbine Aero-Engines
,”
ASME J. Eng. Gas Turbines Power
,
145
(
8
), p.
081003
.10.1115/1.4062561
12.
Wei
,
Z.
,
Zhang
,
S.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2022
, “
Self-Enhancing Model-Based Control for Active Transient Protection and Thrust Response Improvement of Gas Turbine Aero-Engines
,”
Energy
,
242
, p.
123030
.10.1016/j.energy.2021.123030
13.
Wei
,
Z.
, and
Zhang
,
S.
,
2023
, “
Auto-Updating Model-Based Control for Thrust Variation Mitigation and Acceleration Performance Enhancement of Gas Turbine Aero-Engines
,” Propul. Power Res.
, epub.
10.1016/j.jppr.2023.02.008
14.
Le Maître
,
O.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
,
Springer Science & Business Media
, Berlin, Germany.
15.
Wei
,
Z.
,
Zhang
,
S.
, and
Ding
,
S.
,
2024
, “
Fast Uncertainty Assessment of in-Service Thrust Control for Turbofan Engines: An Equivalent Model Using Taylor Expansion
,”
Energy
,
308
, p.
132802
.10.1016/j.energy.2024.132802
16.
Moreno
,
P. J.
,
Raj
,
B.
, and
Stern
,
R. M.
,
1996
, “
A Vector Taylor Series Approach for Environment-Independent Speech Recognition
,”
1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings
, Atlanta, GA, May 7–12, pp.
733
736
.10.1109/ICASSP.1996.543225
17.
Nazir
,
R.
,
2017
, “
Taylor Series Expansion Based Repetitive Controllers for Power Converters, Subject to Fractional Delays
,”
Control Eng. Pract.
,
64
, pp.
140
147
.10.1016/j.conengprac.2017.03.013
18.
Zhang
,
J.
,
Tang
,
H.
, and
Chen
,
M.
,
2019
, “
Linear Substitute Model-Based Uncertainty Analysis of Complicated Non-Linear Energy System Performance (Case Study of an Adaptive Cycle Engine)
,”
Appl. Energy
,
249
, pp.
87
108
.10.1016/j.apenergy.2019.04.138
19.
Basmaji
,
A. A.
,
Fau
,
A.
,
Urrea-Quintero
,
J. H.
,
Dannert
,
M. M.
,
Voelsen
,
E.
, and
Nackenhorst
,
U.
,
2022
, “
Anisotropic Multi-Element Polynomial Chaos Expansion for High-Dimensional Non-Linear Structural Problems
,”
Probab. Eng. Mech.
,
70
, p.
103366
.10.1016/j.probengmech.2022.103366
20.
dos Santos Oliveira
,
E.
, and
Nackenhorst
,
U.
,
2024
, “
Sparse Polynomial Chaos Expansion for High-Dimensional Nonlinear Damage Mechanics
,”
Probab. Eng. Mech.
,
75
, p.
103556
.10.1016/j.probengmech.2023.103556
21.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2010
, “
Adaptive Polynomial Chaos for Gas Turbine Compression Systems Performance Analysis
,”
AIAA J.
,
48
(
6
), pp.
1156
1170
.10.2514/1.J050012
22.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2011
, “
Robust Design Optimization of Gas Turbine Compression Systems
,”
J. Propul. Power
,
27
(
2
), pp.
282
295
.10.2514/1.48965
23.
Wang
,
M.
,
Zhang
,
S.
,
Shi
,
D.
, and
Holzapfel
,
F.
,
2021
, “
Operational Availability Analysis of Short-Haul Electric Aeroplane Using Polynomial Chaos Expansion
,”
Transportmetrica B: Transp. Dyn.
,
10
(
1
), pp.
988
1009
.10.1080/21680566.2021.1991506
24.
Bürkner
,
P.-C.
,
Kröker
,
I.
,
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2023
, “
A Fully Bayesian Sparse Polynomial Chaos Expansion Approach With Joint Priors on the Coefficients and Global Selection of Terms
,”
J. Comput. Phys.
,
488
, p.
112210
.10.1016/j.jcp.2023.112210
25.
Reitz
,
G.
,
Kellersmann
,
A.
, and
Friedrichs
,
J.
,
2018
, “
Full High Pressure Compressor Investigations to Determine Aerodynamic Changes Due to Deterioration
,”
ASME
Paper No. GT2018-76644.10.1115/GT2018-76644
26.
Chapman
,
J. W.
,
Lavelle
,
T. M.
, and
Litt
,
J. S.
,
2016
, “
Practical Techniques for Modeling Gas Turbine Engine Performance
,”
AIAA
Paper No. 2016-4527.10.2514/6.2016-4527
27.
Chapman
,
2014
, “
JT9D_Public_NPSSv241
,” Github, accessed Jan. 16, 2014, https://github.com/nasa/T-MATS/tree/master/Resources/JT9D_Public_NPSSv241
28.
Guangqi
,
L.
,
Zengchan
,
S.
, and
Rugen
,
W.
,
2007
,
Numerical Simulation of Aviation Gas Turbine Engine
,
National Defense Industry Press
,
Beijing, China
.
29.
Chappell
,
M. S.
, and
Cockshutt
,
E. P.
,
1969
, “
Gas Turbine Cycle Calculations: Thermodynamic Data Tables for Air and Combustion Products
,”
National Research Council Aeronautical Report
, Ottawa, ON, Canada, Report No.
LR 579, NRC 14300
.https://repository.tudelft.nl/record/uuid:cf4798b9-aa69-43ae-a9f0-8d7a8968c879
30.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Wiley
, Hoboken, NJ.
31.
Li
,
Y. G.
,
2010
, “
Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
041701
.10.1115/1.3159378
32.
Ramadhan
,
E.
,
Li
,
Y.-G.
, and
Maherdianta
,
D.
,
2019
, “
Application of Adaptive GPA to an Industrial Gas Turbine Using Field Data
,”
ASME
Paper No. GT2019-90686.10.1115/GT2019-90686
33.
Kurzke
,
J.
,
1997
, “
Some Applications of the Monte Carlo Method to Gas Turbine Performance Simulations
,” ASME Paper No. 97-GT-048.10.1115/97-GT-048
34.
Wei
,
Z.
,
Zhang
,
S.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2020
, “
Gas Turbine Aero-Engines Real Time on-Board Modelling: A Review, Research Challenges, and Exploring the Future
,”
Prog. Aerosp. Sci.
,
121
, p.
100693
.10.1016/j.paerosci.2020.100693
35.
Koekoek
,
R.
, and
Swarttouw
,
R. F.
,
1994
, “
The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue
,” Delft University of Technology, Delft, The Netherlands.https://fa.ewi.tudelft.nl/~koekoek/askey/
36.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939.10.2514/6.2007-1939
37.
Blumensath
,
T.
, and
Davies
,
M. E.
,
2007
, “
On the Difference Between Orthogonal Matching Pursuit and Orthogonal Least Squares
,” Edinburgh University, Edinburgh, UK.https://eprints.soton.ac.uk/142469/1/BDOMPvsOLS07.pdf
You do not currently have access to this content.