Abstract

Precooled air-breathing cycles are promising candidates to power future high-speed flight as well as single-stage-to-orbit vehicles, due to their increased efficiency over contemporary propulsion systems and launch vehicles. These concepts usually feature complex interactions in the synergy of their thermodynamic cycles, which are not yet well understood, especially at off-design conditions. In this study, a performance model for a precooled, hybrid, air-breathing, rocket-cycle engine is developed for its air-breathing mode of operation. One-dimensional thermodynamic modeling is employed within a component-level approach, to evaluate the performance and operation of the cycle under investigation in the range of 1.35M5 and conditions of up to 26 km altitude. The model is validated quantitatively and qualitatively for both design and off-design conditions. The specific impulse Isp and specific thrust Fspec, as predicted by the model, agree within less than 5% for the design-point conditions at M = 5. At off-design conditions, the model captures the trend of Isp and agrees within less than 1% with respect to the data for the maximum value of Isp. The maximum gross thrust Fgross point is predicted correctly at M=4. The fundamental operating principles and synergetic characteristics of the engine at design and off-design conditions are investigated and reported. Parametric analyses quantify the influence of the engine's parameters on the leading performance metrics. A model which does not feature a bypass duct is created and compared for the same inflow conditions and mission profile. It is found that the engine without the bypass duct exhibits reduced specific impulse which can be up to 32% lower at off-design conditions. In addition, the corresponding fuel mass flowrate to achieve the same mission is increased by a factor of 1.5. It is demonstrated that the overall trend of engine efficiency cannot be properly captured without modeling of the bypass duct, especially at the region of M<3.5, where the ramjet-like operation is critical. This highlights the importance of the bypass, which is typically neglected in the modeling of such high-speed, combined-cycle systems.

References

1.
Ingenito
,
A.
,
2021
,
Subsonic Combustion Ramjet Design
,
Springer Nature,
Switzerland.
2.
Curran
,
E. T.
, and
Murthy
,
S.
,
2001
,
Scramjet Propulsion
, Vol.
189
,
AIAA
, Reston, VA.
3.
Snyder
,
L.
,
Escher
,
D.
,
DeFrancesco
,
R.
,
Gutierrez
,
J.
, and
Buckwalter
,
D.
,
2004
, “
Turbine Based Combination Cycle (TBCC) Propulsion Subsystem Integration
,”
AIAA
Paper No. 2004-3649.10.2514/6.2004-3649
4.
Oike
,
M.
,
Kamijo
,
K.
,
Tanaka
,
D.
,
Yamada
,
H.
, and
Yoshida
,
H.
,
1999
, “
LACE for Rocket-Based Combined-Cycle
,”
AIAA
Paper No. 99-0091.10.2514/6.99-0091
5.
Sato
,
T.
,
Tanatsugu
,
N.
,
Naruo
,
Y.
,
Omi
,
J.
,
Tomike
,
J.
I., and
Nishino
,
T.
,
2000
, “
Development Study on ATREX Engine
,”
Acta Astronaut.
,
47
(
11
), pp.
799
808
.10.1016/S0094-5765(00)00129-6
6.
Webber
,
H.
,
Bond
,
A.
, and
Hempsell
,
M.
,
2007
, “
The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters
,”
JBIS—J. Br. Interplanet. Soc.
,
60
(
5
), pp.
188
196.
https://www.researchgate.net/publication/289640231_The_sensitivity_of_precooled_airbreathing_engine_performance_to_heat_exchanger_design_parameters
7.
Varvill
,
R.
, and
Bond
,
A.
,
2003
, “
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
,”
J. Br. Interplanet. Soc.
,
56
(
3/4
), pp.
108
117
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=72e4269768fe4f7bcf882ae930b4ed26e972464b
8.
Jivraj
,
F.
,
Bond
,
A.
,
Varvill
,
R.
, and
Paniagua
,
G.
,
2007
, “
The Scimitar Precooled Mach 5 Engine
,”
Proceedings of the 2nd European Conference for Aerospace Sciences, EUCASS
, Brussels, Belgium, July 1–6, Paper No. 5-08-03.https://core.ac.uk/download/pdf/295856.pdf
9.
Wang
,
C.
,
Dang
,
C.
,
Ha
,
C.
,
Qin
,
J.
, and
Huang
,
H.
,
2022
, “
Thermodynamic Analysis for a Novel Steam Rankine Cycle Based Indirect Chemical Precooled Engine Used for Supersonic Flight
,”
Fuel
,
321
, p.
123956
.10.1016/j.fuel.2022.123956
10.
Yao
,
Z.
,
Guo
,
Y.
,
Liu
,
M.
, and
Zhou
,
S.
,
2022
, “
Performance Study of a Pre-Cooled Turbo-Rocket Combined Engine Under a Wide Mach Number of 0∼5
,”
Case Stud. Therm. Eng.
,
38
, p.
102307
.10.1016/j.csite.2022.102307
11.
Wei
,
X.
,
Jin
,
F.
,
Ji
,
H.
, and
Jin
,
Y.
,
2022
, “
Thermodynamic Analysis of Key Parameters on the Performance of Air Breathing Pre-Cooled Engine
,”
Appl. Therm. Eng.
,
201
, p.
117733
.10.1016/j.applthermaleng.2021.117733
12.
Zhang
,
J.
,
Wang
,
Z.
, and
Li
,
Q.
,
2017
, “
Thermodynamic Efficiency Analysis and Cycle Optimization of Deeply Precooled Combined Cycle Engine in the Air-Breathing Mode
,”
Acta Astronaut.
,
138
, pp.
394
406
.10.1016/j.actaastro.2017.06.011
13.
Yu
,
X.
,
Wang
,
C.
, and
Yu
,
D.
,
2020
, “
Minimization of Entropy Generation of a Closed Brayton Cycle Based Precooling-Compression System for Advanced Hypersonic Airbreathing Engine
,”
Energy Convers. Manage.
,
209
, p.
112548
.10.1016/j.enconman.2020.112548
14.
Yu
,
X.
,
Wang
,
C.
, and
Yu
,
D.
,
2019
, “
Configuration Optimization of the Tandem Cooling-Compression System for a Novel Precooled Hypersonic Airbreathing Engine
,”
Energy Convers. Manage.
,
197
, p.
111827
.10.1016/j.enconman.2019.111827
15.
Yu
,
X.
,
Wang
,
C.
, and
Yu
,
D.
,
2020
, “
Thermodynamic Design and Optimization of the Multi-Branch Closed Brayton Cycle Based Precooling-Compression System for a Novel Hypersonic Aeroengine
,”
Energy Convers. Manage.
,
205
, p.
112412
.10.1016/j.enconman.2019.112412
16.
Fernández-Villacé
,
V.
, and
Paniagua
,
G.
,
2010
, “
Simulation of a Combined Cycle for High Speed Propulsion
,”
AIAA
Paper No. 2010-1125.10.2514/6.2010-1125
17.
Zou
,
Z.
,
Wang
,
Y.
,
Du
,
P.
,
Yao
,
L.
,
Yang
,
S.
,
Zhang
,
W.
, and
Luo
,
J.
,
2022
, “
A Novel Simplified Precooled Airbreathing Engine Cycle: Thermodynamic Performance and Control Law
,”
Energy Convers. Manage.
,
258
, p.
115472
.10.1016/j.enconman.2022.115472
18.
Zhang
,
D.
,
Chen
,
C.
, and
Yu
,
X.
,
2023
, “
Control Law Synthetizing for an Innovative Indirect Precooled Airbreathing Engine Under Off-Design Operation Conditions
,”
Energy
,
263
, p.
126110
.10.1016/j.energy.2022.126110
19.
Tsentis
,
S.
,
Gkoutzamanis
,
V.
,
Gaitanis
,
A.
, and
Kalfas
,
A.
,
2021
, “
Multi-Platform App-Embedded Model for Hybrid Air-Breathing Rocket-Cycle Engine in Hypersonic Atmospheric Ascent
,”
Aeronaut. J.
,
125
(
1291
), pp.
1631
1653
.10.1017/aer.2021.3
20.
Wang
,
C.
,
Eri
,
Q.
,
Wang
,
Y.
,
Kong
,
B.
, and
Ding
,
W.
,
2023
, “
Novel Three-Dimensional Simplified Numerical Simulation Method of a Compact Precooler for Hypersonic Precooled Air-Breathing Engine
,”
Appl. Therm. Eng.
,
230
, p.
120827
.10.1016/j.applthermaleng.2023.120827
21.
Wang
,
C.
,
Eri
,
Q.
,
Wang
,
Y.
, and
Ding
,
W.
,
2023
, “
Flow and Heat Transfer Characteristics of Intake-Precooler System for Hypersonic Precooled Aero-Engine
,”
Appl. Therm. Eng.
,
229
, p.
120596
.10.1016/j.applthermaleng.2023.120596
22.
Wang
,
C.
,
Eri
,
Q.
,
Wang
,
Y.
,
Kong
,
B.
, and
Ding
,
W.
,
2023
, “
Multi-Objective Aerodynamic Optimization of an Axisymmetric Variable-Geometry Inlet With a Mach 5 Design Point
,”
Aerosp. Sci. Technol.
,
136
, p.
108189
.10.1016/j.ast.2023.108189
23.
Hempsell
,
M.
,
Longstaff
,
R.
, and
Bond
,
A.
,
2014
, “
Skylon Users' Manual
,”
Reaction Engines Limited
, Oxfordshire, UK, Document No. SKY-REL-MA-0001, Rev. 2.
24.
Verstraete
,
D.
, and
Hendrick
,
P.
,
2011
, “
Hydrogen Fueled Precooled Airbreathing Engines for Hypersonic Aircraft and Spaceplanes
,” ISABE, Indianapolis, IN.
25.
Varvill
,
R.
,
2010
, “
Heat Exchanger Development at Reaction Engines Ltd
,”
Acta Astronaut.
,
66
(
9–10
), pp.
1468
1474
.10.1016/j.actaastro.2009.11.010
26.
Longstaff, R., and Bond, A.,
2011
, “
The Skylon Project
,”
AIAA
Paper No. 2011-2244.10.2514/6.2011-2244
27.
Agency
,
E. S.
,
2011
, “
Skylon Assessment Report
,” ESA document, Report No. TEC-MPC/2011/946/MF.
28.
Sutton
,
G. P.
, and
Biblarz
,
O.
,
2016
,
Rocket Propulsion Elements
,
Wiley
, Hoboken, NJ.
29.
Anderson
,
J. D.
,
1990
,
Modern Compressible Flow: With Historical Perspective
, Vol.
12
,
McGraw-Hill
,
New York
.
30.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables
, Vol.
9
,
American Chemical Society
,
Washington, DC
.
31.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
32.
Leachman
,
J. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S.
, and
Lemmon
,
E. W.
,
2009
, “
Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen
,”
J. Phys. Chem. Ref. Data
,
38
(
3
), pp.
721
748
.10.1063/1.3160306
33.
Wilson
,
D. G.
,
1984
, “
Design of High-Efficiency Turbomachinery and Gas Turbines
,” MIT Press, Cambridge, MA.
34.
Webber
,
H.
,
Feast
,
S.
, and
Bond
,
A.
,
2009
, “
Heat Exchanger Design in Combined Cycle Engines
,”
J. Br. Interplanet. Soc.
,
54
(
4
), pp.
122
130
.https://www.researchgate.net/publication/259104001_Heat_Exchanger_Design_in_Combined_Cycle_Engines
35.
Kamijo
,
K.
,
Sogame
,
E.
, and
Okayasu
,
A.
,
1982
, “
Development of Liquid Oxygen and Hydrogen Turbopumps for the le-5 Rocket Engine
,”
J. Spacecr. Rockets
,
19
(
3
), pp.
226
231
.10.2514/3.62241
36.
Douglass
,
H.
,
1973
, “
Liquid Rocket Engine Centrifugal Flow Turbopumps
,” NASA, Washington, DC, Report No.
NASA SP-8109.
https://ntrs.nasa.gov/citations/19740020848
37.
Summerfield
,
M.
,
Foster
,
C. R.
, and
Swan
,
W. C.
,
1954
, “
Flow Separation in Overexpanded Supersonic Exhaust Nozzles
,”
Jet Propul.
,
24
(
5
), pp.
319
321
.
38.
Zucrow
,
M. J.
, and
Hoffman
,
J. D.
,
1977
,
Gas Dynamics. Volume 2-Multidimensional Flow
,
Wiley
,
New York
.
39.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
40.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
41.
Grimaldi
,
G.
,
2022
, “
Development of a Conceptual Design Tool to Predict Performance of Hydrogen Fuelled Precooled Air-Breathing Rocket Engines
,” Proceedings of the
33rd Congress of the International Council of the Aeronautical Sciences
,
ICAS
, Stockholm, Sweden , Sept. 4–9, Paper No. 0152.https://www.icas.org/ICAS_ARCHIVE/ICAS2022/data/preview/ICAS2022_0152.htm
You do not currently have access to this content.