Abstract

The flow field developing inside the stator–rotor cavities of gas turbines is characterized by a complex unsteady behavior which still requires expensive and time consuming computational fluid dynamics simulations to be accurately modeled. Hence, the experimental characterization of the rim sealing effectiveness by means of scaled down geometries that replicate the rim seals found in actual engines still represent a widely used approach in literature. However, the obtained results can greatly depend on the specific geometry of the tested rim seal. Moreover, different geometrical parameters can vary during the operation of the engine, especially under transient or off-design conditions, thus influencing the resulting effectiveness values. For this reason, the sealing performance of seven different configurations of radial rim seals has been investigated and the obtained dataset has been correlated by using the orifice model. Hence, a detailed comparison of the results allowed the evaluation of the impact of different values of axial overlap, different distances between the vanes trailing edge and the blades leading edge and different values of radial gap. In particular, a three times greater axial overlap and a modest increase in the distance between the trailing edge of the vanes and the leading edge of the blades were both found to provide a limited improvement in the sealing performance, with a respective average reduction in Φmin of approximately 5% and 6%. A radial gap 2.4 times greater was instead found to lead to an average increase in the required quantity of sealing flowrate of approximately 44%. Hence, the amount of purge flow required to fully seal a cavity was not found to exhibit a linear increase with the radial gap.

References

1.
Abe
,
T.
,
1979
, “
An Investigation of Turbine Disk Cooling (Experimental Investigation and Observation of Hot Gas Flow Into a Wheel Space)
,” Proceedings of the
13th CIMAC Congress
, Vienna, Austria, May 7–10.
2.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.10.1016/0142-727X(88)90061-6
3.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.10.1016/0142-727X(88)90062-8
4.
Hamabe
,
K.
, and
Ishida
,
K.
,
1992
, “
Rim Seal Experiments and Analysis of a Rotor-Stator System With Nonaxisymmetric Main Flow
,”
ASME
Paper No. 92-GT-160.10.1115/92-GT-160
5.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
ASME
Paper No. 94-GT-126.10.1115/94-GT-126
6.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.10.1115/1.2928368
7.
Bohn
,
D. E.
,
Johann
,
E.
, and
Kruger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
ASME
Paper No. 95-GT-143.10.1115/95-GT-143
8.
Bohn
,
D. E.
,
Rudzinski
,
B.
,
Surken
,
N.
, and
Gartner
,
W.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 99-GT-248.10.1115/99-GT-248
9.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2003-38459.10.1115/GT2003-38459
10.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2006-90453.10.1115/GT2006-90453
11.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2006
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME
Paper No. GT2006-90853.10.1115/GT2006-90853
12.
Johnson
,
B. V.
,
Wang
,
C.-Z.
, and
Roy
,
R. P.
,
2008
, “
A Rim Seal Orifice Model With 2 Cds and Effects of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.10.1115/GT2008-50650
13.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals–Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
14.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals–Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p. 031006.10.1115/1.4001178
15.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals–Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p. 021012.10.1115/1.4006609
16.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals–Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p. 021013.10.1115/1.4006586
17.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
491
507
.10.1177/0957650914527273
18.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals–Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.10.1115/1.4007504
19.
Orsini
,
L.
,
Picchi
,
A.
,
Bonini
,
A.
,
Innocenti
,
L.
,
Di Benedetto
,
D.
,
Da Soghe
,
R.
, and
Mazzei
,
L.
,
2022
, “
Design Procedure of a Rotating Cavity Rig for Hot Gas Ingestion Investigation
,”
ASME
Paper No. GT2022-82676.10.1115/GT2022-82676
20.
Orsini
,
L.
,
Brocchi
,
S.
,
Picchi
,
A.
,
Facchini
,
B.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2023
, “
Commissioning of a Newly Designed Experimental Facility for Hot Gas Ingestion Investigation
,”
Proceedings of the 15th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Budapest, Hungary, Apr. 24–28, Paper No. ETC2023-263.10.29008/ETC2023-263
21.
Sangan
,
C. M.
,
2011
, “
Measurement of Ingress Through Gas Turbine Rim Seals
,” Ph.D. thesis,
University of Bath, Bath
,
UK
.
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/P-InstrumentCalibration/Kline_McClintock1953.pdf
23.
Graber
,
D. J.
,
Daniels
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disk Pumping Test
,”
Aero Propulsion Laboratory, Wright-Patterson Air Force Base
, OH, Report No. AFWAL-TR-87-2050.
24.
Orsini
,
L.
,
Picchi
,
A.
,
Facchini
,
B.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2024
, “
On the Use of Pressure-Sensitive Paint to Determine the Rim Sealing Effectiveness
,”
ASME J. Turbomach.
,
146
(
2
), p.
021001
.10.1115/1.4063754
25.
Robak
,
C. W.
,
Faghri
,
A.
, and
Thole
,
K. A.
,
2019
, “
Analysis of Gas Turbine Rim Cavity Ingestion With Axial Purge Flow Injection
,”
ASME
Paper No. GT2019-91807.10.1115/GT2019-91807
26.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.10.1115/1.4045148
27.
Roy
,
A. S.
,
Fridh
,
J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2021
, “
Flow Instability Effects Related to Purge Through a Gas Turbine Chute Seal
,”
J. Global Power Propul. Soc.
,
5
, pp.
111
125
.10.33737/jgpps/140172
You do not currently have access to this content.