Abstract

High-speed supersonic radial compressors are a critical enabling technology for meeting the requirements of future aviation-propulsion and thermal-management systems. These turbomachines must be designed to be both efficient and robust on the widest possible operating range. Flow instabilities in the form of rotating stall and surge are therefore phenomena that must be accurately predicted early in the design process. Unsteady full-annulus computational fluid dynamics (CFD) can be used to get accurate information about the onset of instabilities, but at the expense of costly simulations. As a result, the design of new compressors continues to rely on existing correlations for the prediction of the critical mass flowrate. This approach, however, leads to suboptimal compressor designs. This article provides a review of the numerical methodologies that can be used for the accurate prediction of the critical mass flowrate in high-speed centrifugal compressors. Methods of different fidelity level and computational cost are described. Two particularly promising models, namely, those proposed by Spakovszky and Sun, are subsequently examined in more detail. Exemplary applications of these two models are finally discussed.

References

1.
Giuffre
,
A.
,
Colonna
,
P.
, and
Pini
,
M.
,
2022
, “
The Effect of Size and Working Fluid on the Multi-Objective Design of High-Speed Centrifugal Compressors
,”
Int. J. Refrig.
,
143
, pp.
43
56
.10.1016/j.ijrefrig.2022.06.023
2.
Wittrock
,
D.
,
Junker
,
M.
,
Beversdorff
,
M.
,
Peters
,
A.
, and
Nicke
,
E.
,
2020
, “
A Deep Insight Into the Transonic Flow of an Advanced Centrifugal Compressor Design
,”
ASME J. Turbomach.
,
142
(
9
), p.
091004
.10.1115/1.4047609
3.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
4.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
ASME J. Fluids Eng.
,
77
(
4
), pp.
455
467
.10.1115/1.4014389
5.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
6.
Vacula
,
J.
, and
Novotný
,
P.
,
2021
, “
An Overview of Flow Instabilities Occurring in Centrifugal Compressors Operating at Low Flow Rates
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111002
.10.1115/1.4051642
7.
Zhang
,
L.
,
He
,
R.
,
Wang
,
S.
, and
Zhang
,
Q.
,
2020
, “
A Review of Rotating Stall in Vaneless Diffuser of Centrifugal Compressor
,”
J. Therm. Sci.
,
29
(
2
), pp.
323
342
.10.1007/s11630-020-1261-y
8.
Greitzer
,
E. M.
,
1980
, “
Review—Axial Compressor Stall Phenomena
,”
ASME J. Fluids Eng.
,
102
(
2
), pp.
134
151
.10.1115/1.3240634
9.
Camp
,
T. R.
, and
Day
,
I. J.
,
1997
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME
Paper No. 97-GT-526.10.1115/97-GT-526
10.
Tryfonidis
,
M.
,
Etchevers
,
O.
,
Paduano
,
J. D.
,
Epstein
,
A. H.
, and
Hendricks
,
G. J.
,
1995
, “
Prestall Behavior of Several High-Speed Compressors
,”
ASME J. Turbomach.
,
117
(
1
), pp.
62
80
.10.1115/1.2835644
11.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
290
301
.10.1115/1.2929105
12.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.10.1115/1.4028494
13.
Dehner
,
R.
, and
Selamet
,
A.
,
2019
, “
Three-Dimensional Computational Fluid Dynamics Prediction of Turbocharger Centrifugal Compression System Instabilities
,”
ASME J. Turbomach.
,
141
(
8
), p.
081004
.10.1115/1.4042728
14.
Marconcini
,
M.
,
Bianchini
,
A.
,
Checcucci
,
M.
,
Ferrara
,
G.
,
Arnone
,
A.
,
Ferrari
,
L.
,
Biliotti
,
D.
, and
Rubino
,
D. T.
,
2017
, “
A Three-Dimensional Time-Accurate Computational Fluid Dynamics Simulation of the Flow Field Inside a Vaneless Diffuser During Rotating Stall Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021001
.10.1115/1.4034633
15.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.10.1115/1.4028558
16.
Choi
,
M.
,
Smith
,
N. H. S.
, and
Vahdati
,
M.
,
2013
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.10.1115/1.4006641
17.
Moore
,
F. K.
,
1984
, “
A Theory of Rotating Stall of Multistage Axial Compressors: Part I—Small Disturbances
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
313
320
.10.1115/1.3239565
18.
Moore
,
F. K.
,
1984
, “
A Theory of Rotating Stall of Multistage Axial Compressors: Part II—Finite Disturbances
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
321
326
.10.1115/1.3239566
19.
Moore
,
F. K.
,
1984
, “
A Theory of Rotating Stall of Multistage Axial Compressors: Part III—Limit Cycles
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
327
334
.10.1115/1.3239567
20.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
21.
Greitzer
,
E. M.
, and
Moore
,
F. K.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part II—Application
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.10.1115/1.3239893
22.
Senoo
,
Y.
, and
Kinoshita
,
Y.
,
1978
, “
Limits of Rotating Stall and Stall in Vaneless Diffuser of Centrifugal Compressors
,”
ASME
Paper No. 78-GT-19.10.1115/78-GT-19
23.
Bonnaure
,
L. P.
,
1991
, “
Modelling High Speed Multistage Compressor Stability
,”
Master's thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://hdl.handle.net/1721.1/13046
24.
Feulner
,
M. R.
,
Hendricks
,
G. J.
, and
Paduano
,
J. D.
,
1996
, “
Modeling for Control of Rotating Stall in High Speed Multi-Stage Axial Compressors
,”
ASME J. Turbomach.
, 118(1), pp.
1
10
.10.1115/1.2836601
25.
Spakovszky
,
Z. S.
,
2000
, “
Applications of Axial and Radial Compressor Dynamic System Modeling
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/8888
26.
Spakovszky
,
Z. S.
,
Gertz
,
J. B.
,
Sharma
,
O. P.
,
Paduano
,
J. D.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
2000
, “
Influence of Compressor Deterioration on Engine Dynamic Behavior and Transient Stall-Margin
,”
ASME J. Turbomach.
,
122
(
3
), pp.
477
484
.10.1115/1.1303817
27.
Spakovszky
,
Z. S.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
,
van Schalkwyk
,
C. M.
,
Suder
,
K. L.
, and
Bright
,
M. M.
,
1999
, “
Rotating Stall Control in a High-Speed Stage With Inlet Distortion: Part I—Radial Distortion
,”
ASME J. Turbomach.
,
121
(
3
), pp.
510
516
.10.1115/1.2841345
28.
Gong
,
Y.
,
1999
, “
A Computational Model for Rotating Stall and Inlet Distortions in Multistage Compressors
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/104765
29.
Gong
,
Y.
,
Tan
,
C. S.
,
Gordon
,
K. A.
, and
Greitzer
,
E. M.
,
1999
, “
A Computational Model for Short-Wavelength Stall Inception and Development in Multistage Compressors
,”
ASME J. Turbomach.
,
121
(
4
), pp.
726
734
.10.1115/1.2836726
30.
Marble
,
F. E.
, and
Hawthorne
,
W. R.
,
1964
, “
Three-Dimensional Flow in Turbomachines
,”
High Speed Aerodyn. Jet Propul.
,
10
(
10
), pp.
83
166
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=44dc69206d1bf4d2255a2212a98714d90cae9e33#page=98
31.
Chima
,
R. V.
,
2006
, “
A Three-Dimensional Unsteady CFD Model of Compressor Stability
,”
ASMEDC
,
Barcelona, Spain
, Report No.
NASA/TM—2006-214117
.https://ntrs.nasa.gov/citations/20060008696
32.
Longley
,
J. P.
,
2007
, “
Calculating Stall and Surge Transients
,”
ASME
Paper No. GT2007-27378.10.1115/GT2007-27378
33.
Benneke
,
B.
,
2009
, “
A Methodology for Centrifugal Compressor Stability Prediction
,”
Master's thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.https://core.ac.uk/download/pdf/4419182.pdf
34.
Kottapalli
,
A. P.
,
2013
, “
Development of a Body Force Model for Centrifugal Compressors
,”
Master's thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/85697
35.
Righi
,
M.
,
Pachidis
,
V.
,
Könözsy
,
L.
, and
Pawsey
,
L.
,
2018
, “
Three-Dimensional Through-Flow Modelling of Axial Flow Compressor Rotating Stall and Surge
,”
Aerosp. Sci. Technol.
,
78
, pp.
271
279
.10.1016/j.ast.2018.04.021
36.
Righi
,
M.
,
Pachidis
,
V.
,
Könözsy
,
L.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2020
, “
Three-Dimensional Low-Order Surge Model for High-Speed Axial Compressors
,”
J. Global Power Propul. Soc.
,
4
, pp.
274
284
.10.33737/jgpps/130790
37.
Righi
,
M.
,
Pachidis
,
V.
, and
Könözsy
,
L.
,
2020
, “
On the Prediction of the Reverse Flow and Rotating Stall Characteristics of High-Speed Axial Compressors Using a Three-Dimensional Through-Flow Code
,”
Aerosp. Sci. Technol.
,
99
, p.
105578
.10.1016/j.ast.2019.105578
38.
Righi
,
M.
,
Pachidis
,
V.
,
Könözsy
,
L.
,
Giersch
,
T.
, and
Schrape
,
S.
,
2022
, “
Experimental Validation of a Three-Dimensional Through-Flow Model for High-Speed Compressor Surge
,”
Aerosp. Sci. Technol.
,
128
, p.
107775
.10.1016/j.ast.2022.107775
39.
Ji
,
J.
,
Hu
,
J.
,
Ma
,
S.
, and
Xu
,
R.
,
2022
, “
A Computational Method of Rotating Stall and Surge Transients in Axial Compressor
,”
Energies
,
15
(
14
), p.
5246
.10.3390/en15145246
40.
Zeng
,
H.
,
Zheng
,
X.
, and
Vahdati
,
M.
,
2022
, “
A Method of Stall and Surge Prediction in Axial Compressors Based on Three-Dimensional Body-Force Model
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031021
.10.1115/1.4053103
41.
Sun
,
X.
,
Liu
,
X.
,
Hou
,
R.
, and
Sun
,
D.
,
2013
, “
A General Theory of Flow-Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.10.2514/1.J052186
42.
Theofilis
,
V.
,
2011
, “
Global Linear Instability
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
319
352
.10.1146/annurev-fluid-122109-160705
43.
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2014
, “
Basic Studies of Flow-Instability Inception in Axial Compressors Using Eigenvalue Method
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031102
.10.1115/1.4026417
44.
Yunfei
,
M.
,
Xiaohua
,
L.
,
Sun
,
D.
, and
Xiaofeng
,
S.
,
2015
, “
Numerical Prediction of Stall Inception in Centrifugal Compressor Using Eigenvalue Method
,”
ASME
Paper No. GT2015-42590.10.1115/GT2015-42590
45.
Sun
,
X.
,
Ma
,
Y.
,
Liu
,
X.
, and
Sun
,
D.
,
2016
, “
Flow Stability Model of Centrifugal Compressors Based on Eigenvalue Approach
,”
AIAA J.
,
54
(
8
), pp.
2361
2376
.10.2514/1.J054350
46.
Hu
,
C.
,
Liu
,
P.
,
Zhu
,
X.
,
Chen
,
H.
, and
Du
,
Z.
,
2017
, “
A Numerical Approach to Predict the Rotating Stall in the Vaneless Diffuser of a Centrifugal Compressor Using Eigenvalue Method
,”
J. Theor. Appl. Mech.
,
55
(
2
), p.
635
.10.15632/jtam-pl.55.2.635
47.
He
,
C.
,
Ma
,
Y.
,
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2018
, “
Aerodynamic Instabilities of Swept Airfoil Design in Transonic Axial-Flow Compressors
,”
AIAA J.
,
56
(
5
), pp.
1878
1893
.10.2514/1.J056053
48.
Xie
,
Z.
,
Liu
,
Y.
,
Liu
,
X.
,
Sun
,
D.
,
Lu
,
L.
, and
Sun
,
X.
,
2018
, “
Computational Model for Stall Inception and Nonlinear Evolution in Axial Flow Compressors
,”
J. Propul. Power
,
34
(
3
), pp.
720
729
.10.2514/1.B36429
49.
Xie
,
Z.
,
Liu
,
Y.
,
Liu
,
X.
,
Lu
,
L.
, and
Sun
,
X.
,
2019
, “
Effect of RANS Method on the Stall Onset Prediction by an Eigenvalue Approach
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031401
.10.1115/1.4041362
50.
Xu
,
D.
,
He
,
C.
,
Sun
,
D.
, and
Sun
,
X.
,
2020
, “
Analysis Method of Compressor Stability Based on Eigenvalue Theory
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071204
.10.1115/1.4046558
51.
Xu
,
D.
,
He
,
C.
,
Sun
,
D.
, and
Sun
,
X.
,
2021
, “
Stall Inception Prediction of Axial Compressors With Radial Inlet Distortions
,”
Aerosp. Sci. Technol.
,
109
, p.
106433
.10.1016/j.ast.2020.106433
52.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.10.1115/GT2010-22540
53.
Huang
,
Q.
,
Zhang
,
M.
, and
Zheng
,
X.
,
2019
, “
Compressor Surge Based on a 1D-3D Coupled Method – Part 1: Method Establishment
,”
Aerosp. Sci. Technol.
,
90
, pp.
342
356
.10.1016/j.ast.2019.04.040
54.
Sundström
,
E.
,
2017
, “
Flow Instabilities in Centrifugal Compressors at Low Mass Flow Rate
,”
Ph.D. thesis
, KTH Royal Institute of Technology, Stockholm, Sweden.https://www.diva-portal.org/smash/get/diva2:1157882/FULLTEXT02.pdf
55.
Sundström
,
E.
,
Semlitsch
,
B.
, and
Mihăescu
,
M.
,
2018
, “
Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors
,”
Flow, Turbul. Combust.
,
100
(
3
), pp.
705
719
.10.1007/s10494-017-9877-z
56.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.10.1115/1.1643382
57.
Peyret
,
R.
,
2002
,
Spectral Methods for Incompressible Viscous Flow
(Volume 148 of Applied Mathematical Sciences),
Springer
,
New York
.
58.
Fang
,
Y.
,
Sun
,
D.
,
Xu
,
D.
,
He
,
C.
, and
Sun
,
X.
,
2023
, “
Rapid Prediction of Compressor Rotating Stall Inception Using Arnoldi Eigenvalue Algorithm
,”
AIAA J.
,
61
(
8
), pp.
3566
3578
.10.2514/1.J062482
59.
Lehoucq
,
R. B.
,
Sorensen
,
D. C.
, and
Yang
,
C.
,
1998
,
ARPACK Users' Guide, Software, Environments, and Tools
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
60.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), p.
031012
.10.1115/1.2988166
You do not currently have access to this content.