Abstract

The relative casing motion can significantly alter the over-tip-leakage (OTL) flow aerodynamic performances. Traditional tip experimental facilities for relative motion researches, including stationary linear cascade with low-speed moving belt, annular cascade with rotating outer wall, and full-scale experimental rig with rotating blade, were either extremely costly or not capable to reproduce engine-representative casing Mach number. Very recently, a novel design concept for high-speed disk rotor rig has been proposed for tip research. Subsequent to this research, the present study evaluates the aerodynamic performances and the periodicity of the disk rotor rig design using Reynolds-averaged Navier–Stokes computational fluid dynamics simulation. Furthermore, first-of-its-kind experimental results of total pressure loss distributions measured by five-hole probe under high relative casing Mach number are reported. The results demonstrate the applicability of the disk rotor experimental rig for tip aerodynamic investigations.

References

1.
Dambach
,
R.
, and
Hodson
,
H. P.
,
2001
, “
Tip Leakage Flow in a Radial Inflow Turbine With Varying Gap Height
,”
J. Propul. Power
,
17
(
3
), pp.
644
650
.10.2514/2.5791
2.
Zhou
,
C.
, and
Hodson
,
H.
,
2012
, “
Squealer Geometry Effects on Aerothermal Performance of Tip-Leakage Flow of Cavity Tips
,”
J. Propul. Power
,
28
(
3
), pp.
556
567
.10.2514/1.57718
3.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.10.2514/1.55134
4.
Chyu
,
M. K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
,
1987
, “
Heat Transfer in Shrouded Rectangular Cavities
,”
J. Thermophys. Heat Transfer
,
1
(
3
), pp.
247
252
.10.2514/3.35
5.
Virdi
,
A.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power
,
31
(
2
), pp.
527
536
.10.2514/1.B35331
6.
Jiang
,
H.
,
He
,
L.
,
Zhang
,
Q.
, and
Wang
,
L.
,
2018
, “
On Scaling Method to Investigate High-Speed Over-Tip-Leakage Flow at Low-Speed Condition
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062605
.10.1115/1.4038619
7.
De Maesschalck
,
C. D.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Vinha
,
N.
,
2014
, “
Aerothermodynamics of Tight Rotor Tip Clearance Flows in High-Speed Unshrouded Turbines
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
343
351
.10.1016/j.applthermaleng.2014.01.015
8.
Zhu
,
D.
,
Zhang
,
Q.
,
Lu
,
S.
, and
Teng
,
J.
,
2020
, “
Relative Casing Motion Effect on Turbine Squealer Tip Cooling Performance at Tight Tip Clearance
,”
ASME J. Therm. Sci. Eng. Appl.
, epub, pp.
1
18
.10.1115/1.4046518
9.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II—Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.10.1115/1.1369113
10.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.10.1115/1.4028796
11.
Mansouri
,
Z.
,
Settar
,
A.
, and
Khamane
,
H.
,
2018
, “
Computational Investigation of Heat Load and Secondary Flows Near Tip Region in a Transonic Turbine Rotor With Moving Shroud
,”
Appl. Therm. Eng.
,
136
, pp.
141
151
.10.1016/j.applthermaleng.2018.03.012
12.
Zhou
,
C.
,
2014
, “
Aerothermal Performance of Different Tips in Transonic Turbine Cascade With End-Wall Motion
,”
J. Propul. Power
,
30
(
5
), pp.
1316
1327
.10.2514/1.B34963
13.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.10.1115/1.2952378
14.
Dunn
,
M.
, and
Mathison
,
R.
,
2014
, “
History of Short-Duration Measurement Programs Related to Gas Turbine Heat Transfer, Aerodynamics, and Aeroperformance at Calspan and the Ohio State University
,”
ASME J. Turbomach.
,
136
(
4
), p.
041004
.10.1115/1.4024898
15.
Ainsworth
,
R. W.
,
Schultz
,
D. L.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
,
2015
, “
A Transient Flow Facility for the Study of the Thermofluid-Dynamics of a Full Stage Turbine Under Engine Representative Conditions
,”
ASME
Paper No. 88-GT-144.10.1115/88-GT-144
16.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part I: Vane-Rotor and Rotor-Vane Interaction
,”
ASME J. Turbomach.
,
125
(
1
), pp.
33
39
.10.1115/1.1508386
17.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.10.1115/1.3262231
18.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
ASME
Paper No. GT2013-94741.10.1115/GT2013-94741
19.
De Nos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
,
2001
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
123
(
1
), pp.
81
89
.10.1115/1.1314607
20.
Morphis
,
G.
, and
Bindon
,
J. P.
, “
The Effects of Relative Motion, Blade Edge Radius and Gap Size on the Blade Tip Pressure Distribution in an Annular Turbine Cascade With Clearance
,”
ASME
Paper No. 88-GT-256.10.1115/88-GT-256
21.
Dean
,
R. C.
,
1954
, “
The Influence of Tip Clearance on Boundary-Layer Flow in a Rectilinear Cascade
,”
M.I.T. Gas Turbine Laboratory
, Cambridge, MA, Report No. 27-3.
22.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part I: Tip Gap Flow
,”
ASME J. Turbomach.
,
114
(
3
), pp.
652
659
.10.1115/1.2929189
23.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2003
, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
267
273
.10.1115/1.1554411
24.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low Speed Turbine Blade Cascade With Moving Endwall
,”
ASME
Paper No. GT2005-68189.10.1115/GT2005-68189
25.
Palafox
,
P.
,
Oldfield
,
M.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
Lagraff
,
J. E.
,
2012
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
134
(
2
), pp.
469
482
.10.1115/1.4003085
26.
Acharya
,
S.
, and
Moreaux
,
L.
,
2014
, “
Numerical Study of the Flow Past a Turbine Blade Tip: Effect of Relative Motion Between Blade and Shroud
,”
ASME J. Turbomach.
,
136
(
3
), p.
031015
.10.1115/1.4024842
27.
Lu
,
S.
,
Zhang
,
Q.
, and
He
,
L.
,
2022
, “
A High-Speed Disk Rotor Rig Design for Tip Aerothermal Research
,”
ASME J. Turbomach.
,
144
(
5
), p.
051002
.10.1115/1.4052603
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
29.
Chen
,
Y.
,
Cai
,
L.
,
Jiang
,
D.
,
Li
,
Y.
,
Du
,
Z.
, and
Wang
,
S.
,
2023
, “
Experimental and Numerical Investigations for Turbine Aerodynamic Performance With Different Pressure Side Squealers and Incidence Angles
,”
Aerosp. Sci. Technol.
,
136
, p.
108234
.10.1016/j.ast.2023.108234
30.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D. R.
,
2012
,
Fluid Mechanics
,
Academic Press
, Cambridge, MA.
You do not currently have access to this content.