A continuum model is used to simulate transient convective transport phenomena numerically during solidification of a Pb-19 percent Sn alloy in an experimental test cell. Solidification occurs in an axisymmetric, annular mold of stainless steel, cooled along its outer vertical wall. Results show that, during early stages of solidification, double-diffusive convection and liquid exchange between melted and mushy zones are responsible for the formation of channels in the outer periphery of the ingot, which ultimately lead to a form of macrosegregation known as A-segregates. During intermediate stages of solidification, solutally driven natural convection spawns a cone segregate in the interior region of the ingot. The final macrosegregation pattern is characterized, in general, by increasing Sn concentration with increasing height throughout the ingot and by increasing Sn concentration with decreasing radius in the upper portion of the ingot.
Skip Nav Destination
Article navigation
Research Papers
Convective Transport Phenomena and Macrosegregation During Solidification of a Binary Metal Alloy: I—Numerical Predictions
P. J. Prescott,
P. J. Prescott
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
Search for other works by this author on:
F. P. Incropera
F. P. Incropera
Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
Search for other works by this author on:
P. J. Prescott
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
F. P. Incropera
Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
J. Heat Transfer. Aug 1994, 116(3): 735-741 (7 pages)
Published Online: August 1, 1994
Article history
Received:
March 1, 1993
Revised:
September 1, 1993
Online:
May 23, 2008
Citation
Prescott, P. J., and Incropera, F. P. (August 1, 1994). "Convective Transport Phenomena and Macrosegregation During Solidification of a Binary Metal Alloy: I—Numerical Predictions." ASME. J. Heat Transfer. August 1994; 116(3): 735–741. https://doi.org/10.1115/1.2910929
Download citation file:
Get Email Alerts
Cited By
Effect of Rib Blockage Ratio and Arrangements on Impingement Heat Transfer in Double-Wall Cooling
J. Heat Mass Transfer (September 2023)
Numerical Simulation of Mixed Convection Cooling of Electronic Component Within a Lid-Driven Cubic Cavity Filled With Nanofluid
J. Heat Mass Transfer (September 2023)
Experimental Analysis of the Influential Factors on Mixed Convection Flow in Horizontal Pipes
J. Heat Mass Transfer (September 2023)
The Effect of Biot Number on a Generalized Heat Conduction Solution
J. Heat Mass Transfer
Related Articles
Convective Transport Phenomena and Macrosegregation During Solidification of a Binary Metal Alloy: II—Experiments and Comparisons With Numerical Predictions
J. Heat Transfer (August,1994)
Magnetically Damped Convection During Solidification of a Binary Metal Alloy
J. Heat Transfer (May,1993)
The Effect of Turbulence on Solidification of a Binary Metal Alloy With Electromagnetic Stirring
J. Heat Transfer (August,1995)
Flow and Morphological Conditions Associated With Unidirectional Solidification of Aqueous Ammonium Chloride
J. Heat Transfer (November,1993)
Related Chapters
Mixed-Up Convection
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Fatigue Behavior of Austenitic Stainless Steel Alloys Thermally Pre-Charged in Gaseous Hydrogen
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Codes, Volume 1, Fifth Edition