In connection with recombination coefficients derived from experimental data described in the literature, a reaction scheme including detailed rate expressions for O and N atom recombination on the surface of re-entry vehicles is established, consisting of elementary reaction steps. To validate the reaction mechanism derived, surface chemistry and fluid mechanical processes are coupled assuming a one-dimensional stagnation flow field. A quantitative agreement is achieved between recombination coefficients resulting from the numerical computations and those calculated from experiments. The temperature dependence of the recombination coefficient is explained by elementary reaction steps. Furthermore, the reaction scheme established is implemented in a two-dimensional Navier–Stokes code computing the re-entry flow around a simple geometry to show the importance of a detailed modeling of surface reactions.

1.
Breen, J., and Rosner, D. E., 1973, “Catalysis Study for Space Shuttle Vehicle Thermal Protection Systems,” NASA Contract Report CR-134124.
2.
Christmann, K., 1991, Introduction to Surface Physical Chemistry, Springer, New York.
3.
Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E., Rupley, F. M., and Grcar, J. F., 1991a, “SPIN: A Fortran Program for Modeling One-Dimensional Rotating Disk/Stagnation-Flow Chemical Vapor Deposition Reactors,” Sandia National Laboratories Report SAND91-8003.
4.
Coltrin, M. E., Kee, R. J., and Rupley, F. M., 1991b, “SURFACE CHEMKIN (Version 4.0): A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface,” Sandia National Laboratories Report SAND90-8003B.
5.
Deuflhard
P.
,
Hairer
E.
, and
Zugck
J.
,
1987
, “
One-Step and Extrapolation Methods for Differential-Algebraic Systems
,”
Numer. Math.
, Vol.
51
, pp.
501
516
.
6.
Evans
G.
, and
Greif
R.
,
1987
, “
A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
109
, pp.
928
935
.
7.
Fletcher, C. A. J., 1988, Computational Techniques for Fluid Dynamics, Vol. II—Specific Techniques for Different Flow Categories, Springer, Berlin.
8.
Grcar, J. F., Kee, R. J., Smooke, M. D., and Miller, J. A., 1986, “A Hybrid Newton/Time-Integration Procedure for the Solution of Steady, Laminar, One-Dimensional, Premixed Flames,” Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1773–1782.
9.
Grcar, J. F., 1991, “The TWOPNT Program for Boundary Value Problems,” Sandia National Laboratories Report SAND91-8230.
10.
Halpern
B.
, and
Rosner
D. E.
,
1978
, “
Chemical Energy Accommodation at Catalyst Surfaces
,”
J.C.S. Faraday I
, Vol.
74
, pp.
1883
1912
.
11.
Kee, R. J., Warnatz, J., and Miller, J. A., 1983, “A FORTRAN Computer Code Package for the Evaluation of Gas Phase Viscosities, Heat Conductivities, and Diffusion Coefficients,” Sandia National Laboratories Report SAND83-8209.
12.
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., 1986, “A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties,” Sandia National Laboratories Report SAND86-8246.
13.
Kee, R. J., Miller, J. A., Evans, G. H., and Dixon-Lewis, G., 1988, “A Computational Model of the Structure and Extinction of Strained Opposed Flow, Premixed Methane-Air Flame,” Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1479–1494.
14.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1989, “CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Sandia National Laboratories Report SAND89-8009.
15.
Kim
Y. C.
, and
Boudart
M.
,
1991
, “
Recombination of O, N, and H Atoms on Silica: Kinetics and Mechanism
,”
Langmuir
, Vol.
7
, pp.
2999
3005
.
16.
Kolodziej, P., and Stewart, D. A., 1987, “Nitrogen Recombination on High-Temperature Reusable Surface Insulation and the Analysis of Its Effect on Surface Catalysis,” AIAA-87-1637.
17.
Ljungstro¨m
S.
,
Kasemo
B.
,
Rose´n
A.
,
Wahnstro¨m
T.
, and
Fridell
E.
,
1989
, “
An Experimental Study of OH and H2O Formation on Pt in the H2+O2 Reaction
,”
Surf. Sci.
, Vol.
216
, pp.
63
92
.
18.
Marinelli, W. J., and Campbell, J. P., 1986, “Spacecraft-Metastable Energy Transfer Studies: Final Report,” NAS9-17565.
19.
Marinelli, W. J., 1988, “Collisional Quenching of Atoms and Molecules on Spacecraft Thermal Protection Surfaces,” Paper No. AIAA-88-2667.
20.
Melin
G. A.
, and
Madix
R. J.
,
1971
, “
Energy Accommodation During Oxygen Atom Recombination on Metal Surfaces
,”
Trans. Faraday Soc.
, Vol.
67
, pp.
198
211
.
21.
Motz
H.
, and
Wise
H.
,
1960
, “
Diffusion and Heterogeneous Reaction. III. Atom Recombination at a Catalytic Boundary
,”
J. Chem. Phys.
, Vol.
32
, pp.
1893
1894
.
22.
Riedel
U.
,
Maas
U.
, and
Warnatz
J.
,
1993
a, “
Detailed Numerical Modeling of Chemical and Thermal Nonequilibrium in Hypersonic Flows
,”
IMPACT Comput. Sci. Eng.
, Vol.
5
, pp.
20
52
.
23.
Riedel
U.
,
Maas
U.
, and
Warnatz
J.
,
1993
b, “
Simulation of Nonequilibrium Hypersonic Flows
,”
Comp. & Fluids
, Vol.
22
, pp.
285
294
.
24.
Rosner
D. E.
, and
Feng
H.
,
1974
, “
Energy Transfer Effects of Excited Molecule Production by Surface-Catalyzed Atom Recombination
,”
Trans. Faraday Soc.
, Vol.
77
, pp.
884
907
.
25.
Scott
C. D.
,
1981
, “
Catalytic Recombination of Nitrogen and Oxygen on High Temperature Reusable Surface Insulation
,”
Progr. Astronaut. Aeronaut.
, Vol.
77
, pp.
192
212
.
26.
Seward
W. A.
, and
Jumper
E. J.
,
1991
, “
Model for Oxygen Recombination on Silicon-Dioxide Surfaces
,”
Journal of Thermophysics and Heat Transfer
, Vol.
5
, No.
3
, pp.
284
291
.
27.
Stewart, D. A., and Leiser, D. B., 1976, “Effect of Radiant and Convective Heating on the Optical and Thermochemical Properties of Reusable Surface Insulation,” Paper No. AIAA-76-444.
28.
Stewart, D. A., Rakich, J. V., and Lanfranco, M. J., 1981, “Catalytic Surface Effects Experiment on the Space Shuttle,” Paper No. AIAA-81-1143.
29.
Stewart
D. A.
,
Rakich
J. V.
, and
Lanfranco
M. J.
,
1982
, “
Catalytic Surface Effects Experiment on the Space Shuttle
,”
Progr. Astronaut. and Aeronaut.
, Vol.
82
, pp.
248
272
.
30.
Stewart, D. A., Rakich, J. V., and Lanfranco, M. J., 1983, “Catalytic Surface Effects on the Space Shuttle Thermal Protection System During Earth Entry of Flights STS-2 Trough STS-5,” NASA CP 2283.
31.
Stewart, D. A., Chen, Y. K., and Henline, W. D., 1991, “Effect of Nonequilibrium Flow Chemistry and Surface Catalysis on Surface Heating to AFE,” Paper No. AIAA-91-1371.
32.
U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, DC.
33.
Warnatz, J., 1992, “Resolution of Gas Phase and Surface Chemistry Into Elementary Reactions. Plenary Lecture,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 553–579.
34.
Warnatz
J.
,
Allendorf
M.
,
Kee
R. J.
, and
Coltrin
M. E.
,
1994
, “
A Model of Elementary Chemistry and Fluid Mechanics in the Combustion of Hydrogen on Platinum Surfaces
,”
Combust. Flame
, Vol.
96
, pp.
393
406
.
35.
Weast, R. C., ed., 1987, Handbook of Chemistry and Physics, 68th ed., CRC Press, Boca Raton, FL.
36.
Wells, A. F., 1962, “Structural Inorganic Chemistry,” 3rd ed., Oxford University Press, London.
37.
Willey, R. J., 1988, “Arc Jet Diagnostics Tests, Final Report,” NASA-JSC/ASEE SFFP.
38.
Willey
R. J.
,
1993
, “
Comparison of Kinetic Models for Atom Recombination on High-Temperature Reusable Surface Insulation
,”
Journal of Thermophysics and Heat Transfer
, Vol.
7
, No.
1
, pp.
55
62
.
This content is only available via PDF.
You do not currently have access to this content.