A mathematical dilute fluid-particle suspension model governing steady, laminar, compressible, boundary layer flow and heat transfer over a semi-infinite flat plate based on the Eulerian or continuum approach is developed. The model accounts for both particulate viscous and diffusive effects. Both the fluid and the particle phases are assumed to have general power-law viscosity-temperature relations. For the case of finite particle-phase viscosity, a general boundary condition borrowed from rarefied gas dynamics is used for the particle phase at the surface. Uniform and nonuniform particle-phase slip coefficients are investigated. Numerical solution of the governing equations is obtained by an implicit, iterative, tridiagonal finite difference method. Graphical results for the displacement thicknesses and skin-friction coefficients of both phases as well as the wall heat transfer are presented for various parametric conditions.

1.
Apazidis
N.
,
1985
, “
On Two-Dimensional Laminar Flows of a Particulate Suspension in the Presence of Gravity Field
,”
Int. J. Multiphase Flow
, Vol.
11
, pp.
657
698
.
2.
Blottner
F. G.
,
1970
, “
Finite-Difference Methods of Solution of the Boundary-Layer Equations
,”
AIAA Journal
, Vol.
8
, pp.
193
205
.
3.
Chamkha
A. J.
,
1994
, “
Effects of Particulate Diffusion on the Thermal Flat Plate Boundary Layer of a Two-Phase Suspension
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
236
239
.
4.
Chamkha
A. J.
,
1996
a, “
Compressible Dusty-Gas Boundary-Layer Flow Over a Flat Surface
,”
ASME Journal of Fluids Engineering
, Vol.
118
, pp.
179
185
.
5.
Chamkha
A. J.
,
1996
b, “
Compressible Two-Phase Boundary-Layer Flow with Finite Particulate Volume Fraction
,”
International Journal of Engineering Science
, Vol.
34
, pp.
1409
1422
.
6.
Chamkha
A. J.
,
1998
, “
Effects of Particulate Diffusion on the Compressible Boundary-Layer Flow of a Two-Phase Suspension Over a Horizontal Surface
,”
ASME Journal of Fluids Engineering
, Vol.
120
, pp.
146
151
.
7.
Chamkha
A. J.
, and
Peddieson
J.
,
1989
, “
Boundary-Layer Flow of a Particle-Fluid Suspension Past a Flat Plate
,”
Developments in Mechanics
, Vol.
15
, pp.
315
316
.
8.
Chamkha
A. J.
, and
Peddieson
J.
,
1992
, “
Singular Behavior in Boundary-Layer Flow of a Dusty Gas
,”
AIAA Journal
, Vol.
30
, pp.
2966
2968
.
9.
Chamkha
A. J.
, and
Peddieson
J.
,
1994
, “
Boundary-Layer Theory of a Particulate Suspension with Finite Volume Fraction
,”
ASME Journal of Fluids Engineering
, Vol.
116
, pp.
147
153
.
10.
Datta
N.
, and
Mishra
S. K.
,
1982
, “
Boundary Layer Flow if a Dusty Fluid Over a Semi-Infinite Flat Plate
,”
Acta Mechanica
, Vol.
42
, pp.
71
83
.
11.
Drew
D. A.
,
1983
, “
Mathematical Modeling of Two-phase Flow
,”
Annual Review of Fluid Mechanics
, Vol.
15
, pp.
261
291
.
12.
Drew
D. A.
, and
Segal
L. A.
,
1971
, “
Analysis of Fluidized Beds and Foams Using Averaged Equations
,”
Studies in Applied Mathematics
, Vol.
50
, pp.
233
252
.
13.
Gadiraju
M.
, et al.,
1992
, “
Exact Solutions for Two-Phase Vertical Pipe Flow
,”
Mechanics Research Communications
, Vol.
19
, pp.
7
13
.
14.
Gidaspow
D.
,
1986
, “
Hydrodynamics of Fluidization and Heat Transfer: Super Computer Modeling
,”
ASME Applied Mechanics Reviews
, Vol.
39
, pp.
1
23
.
15.
Kuerti, G., 1951, “The Laminar Boundary Layer in Compressible Flow,” Advances in Appl. Mech., II, pp. 21–92.
16.
Marble
F. E.
,
1970
, “
Dynamics of Dusty Gases
,”
Annual Review of Fluid Mechanics
, Vol.
2
, pp.
297
446
.
17.
Osiptsov
A. N.
,
1980
, “
Structure of the Laminar Boundary Layer of a Disperse Medium on a Flat Plate
,”
Fluid Dynamics
, Vol.
15
, pp.
512
517
.
18.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
19.
Prabha
S.
, and
Jain
A. C.
,
1980
, “
On the Use of Compatibility Conditions in the Solution of Gas Particulate Boundary Layer Equations
,”
Applied Scientific Research
, Vol.
36
, pp.
81
91
.
20.
Rubinow
S. I.
, and
Keller
J. B.
,
1961
, “
The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid
,”
Journal of Fluid Mechanics
, Vol.
11
, pp.
447
459
.
21.
Saffman
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
Journal of Fluid Mechanics
, Vol.
22
, pp.
385
400
.
22.
Singleton
R. E.
,
1965
, “
The Compressible Gas-Solid Particle Flow Over a Semi-Infinite Flat Plate
,”
TAMP
, Vol.
16
, pp.
421
449
.
23.
Soo
S. L.
,
1968
, “
Non-equilibrium Fluid Dynamics-Laminar Flow Over a Flat Plate
,”
ZAMP
, Vol.
19
, pp.
545
563
.
24.
Soo, S. L., 1989, Particulates and Continuum Multiphase Fluid Dynamics, Hemisphere, New York, pp. 282, 292.
25.
Stewartson, K., 1974, “Multistructured Boundary Layers on Flat Plates and Related Bodies,” Adv. Appl. Mech., 14, Academic Press, New York, pp. 146–239.
26.
Tsuo
Y. P.
, and
Gidaspow
D.
,
1990
, “
Computation of Flow Patterns in Circulating Fluidized Beds
,”
AIChE Journal
, Vol.
36
, pp.
888
896
.
27.
Wang
B. Y.
, and
Glass
I. I.
,
1988
, “
Compressible Laminar Boundary-Layer Flows of a Dusty Gas Over a Semi-Infinite Flat Plate
,”
Journal of Fluid Mechanics
, Vol.
186
, pp.
223
241
.
28.
Young, A. D., 1949, “Skin Friction in the Laminar Boundary Layer of a Compressible Flow,” Aero. Quart., I, pp. 137–164.
29.
Zuber
N.
,
1964
, “
On the Dispersed Two-Phase Flow in a Laminar Flow Region
,”
Chem. Engng Sci.
, Vol.
19
, pp.
897
917
.
This content is only available via PDF.
You do not currently have access to this content.