The addition of mist to a flow of steam or gas offers enhanced cooling for many applications, including cooling of gas turbine blades. The enhancement mechanisms include effects of mixing of mist with the gas phase and effects of evaporation of the droplets. An impinging mist flow is attractive for study because the impact velocity is relatively high and predictable. Water droplets, less than 15 μm diameter and at concentrations below 10 percent, are considered. The heat transfer is assumed to be the superposition of three components: heat flow to the steam, heat flow to the dispersed mist, and heat flow to the impinging droplets. The latter is modeled as heat flow to a spherical cap for a time dependent on the droplet size, surface tension, impact velocity and surface temperature. The model is used to interpret experimental results for steam invested with water mist in a confined slot jet. The model results follow the experimental data closely.

1.
Goodyer, M. J., and Waterston, R. M., 1973, “Mist-Cooled Turbines,” Conf. of Heat and Fluid Flow in Steam and Gas Turbine Plant, Proc. of Institution of Mechanical Engineers, pp. 166–174.
2.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a Heated Horizontal Tube Part I: Experimental System and Part II: Results and Modeling
,”
ASME J. Turbomach.
,
122
, pp.
360
374
.
3.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a 180-Degree Tube
,”
ASME J. Heat Transfer
,
122
, No.
4
, pp.
749
756
.
4.
Takagi, T., and Ogasawara, M., 1974, “Some Characteristics of Heat and Mass Transfer in Binary Mist Flow,” Proc. of 5th Int. Heat Transfer Conf., Tokyo, Japan Society of Mechanical Engineers, pp. 350–354.
5.
Mastanaiah
,
K.
, and
Ganic
,
E. N.
,
1981
, “
Heat Transfer in Two-Component Dispersed Flow
,”
ASME J. Heat Transfer
,
103
, pp.
300
306
.
6.
Yoshida, H., Suenaga, K., and Echigo, R., 1988, “Turbulence Structure and Heat Transfer of A Two-Dimensional Impinging Jet with Gas-Solid Suspensions,” NHTC, 2, pp. 461–467.
7.
Wachters
,
L. H. J.
,
Smulders
,
L.
,
Vermeulen
,
J. R.
, and
Kleiweg
,
H. C.
,
1966
, “
The Heat Transfer from A Hot Wall to Impinging Mist Droplets in The Spheroidal State
,”
Chem. Eng. Sci.
,
2
, pp.
1231
1238
.
8.
Pederson
,
C. O.
,
1970
, “
An Experimental Study of the Dynamic Behavior and Heat Transfer Characteristics of Water Droplet Impinging upon a Heated Surface
,”
Int. J. Heat Mass Transf.
,
13
, pp.
369
381
.
9.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1992
, “
Observations of Droplet Impingement on a Ceramic Porous Surface
,”
Int. J. Heat Mass Transf.
,
35
, No.
10
, pp.
2377
2388
.
10.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London, Ser. A
,
432
, pp.
13
41
.
11.
Buyevich
,
Yu. A.
, and
Mankevich
,
V. N.
,
1995
, “
Interaction of Dilute Mist Flow with a Hot Body
,”
Int. J. Heat Mass Transf.
,
38
, pp.
731
744
.
12.
Buyevich
,
Yu. A.
, and
Mankevich
,
V. N.
,
1996
, “
Cooling of a Superheated Surface with a Jet Mist Flow
,”
Int. J. Heat Mass Transf.
,
39
, pp.
2353
2362
.
13.
Fujimoto
,
H.
, and
Hatta
,
N.
,
1996
, “
Deformation and Rebounding Processes of a Water Droplet Impinging on a Flat Surface above Leidenfrost Temperature
,”
ASME J. Fluids Eng.
,
118
, pp.
142
149
.
14.
Hatta
,
N.
,
Fujimoto
,
H.
,
Kinoshita
,
K.
, and
Takuda
,
H.
,
1997
, “
Experimental Study of Deformation Mechanism of a Water Droplet Impinging on Hot Metallic Surfaces above Leidenfrost Temperature
,”
ASME J. Fluids Eng.
,
119
, pp.
692
199
.
15.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
,
2001
, “
Mist/Steam Heat Transfer in Confined Slot Jet Impingement
,”
ASME J. Turbomach.
,
123
, No.
1
, pp.
161
167
.
16.
Ganic
,
E. N.
, and
Rosenhow
,
W. M.
,
1977
, “
Dispersed Flow Heat Transfer
,”
Int. J. Heat Mass Transf.
,
20
, pp.
885
866
.
17.
Fluent, 1997, FLUENT 4.4 User’s Guide, I–III, Fluent Inc.
18.
Li, X., 1999, “Cooling by a Mist/Steam Jet,” Ph.D. dissertation, Dept. of Mechanical Engineering, Clemson University, SC.
19.
Gould, R. F., 1964, Contact Angle, Wettability and Adhesion, American Chemistry Society, DC.
20.
Neumann, A. W., and Spelt, J. K., 1996, Applied Surface Thermodynamics, Marcel Dekker, Inc., NY.
21.
Sadhal
,
S. S.
, and
Martin
,
W. W.
,
1977
, “
Heat Transfer Through Drop Condensate Using Differential Inequalities
,”
Int. J. Heat Mass Transf.
,
20
, No.
12
, pp.
1401
1407
.
22.
Sadhal
,
S. S.
, and
Plesset
,
M. S.
,
1979
, “
Effect of Solid Properties and Contact Angle in Dropwise Condensation and Evaporation
,”
ASME J. Heat Transfer
,
101
, No.
1
, pp.
48
54
.
23.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
Bubble Growth Rates in Non-Uniform Temperature Field
,”
Prog. Heat Mass Transfer
,
2
, pp.
283
292
.
You do not currently have access to this content.