The optical properties of particulate emitted from fires burning two distinct polydimethylsiloxane fluids (D4 and M2 or MM, where D=CH32SiO and M=CH33SiO2) were obtained using a transmission cell-reciprocal nephelometer in conjunction with gravimetric sampling. The specific absorption coefficient of particulate ash from fires burning D4 and MM is significantly lower than that of particulate soot from an acetylene (hydrocarbon) flame. Scattering is the dominant part of extinction in fires burning the silicone fluids. This is very different from extinction by soot particles in hydrocarbon fires, where absorption is approximately five times greater than scattering. Temperatures and particulate volume fractions along the axis of a silicone fire D4 were measured using multi-wavelength absorption/emission spectroscopy. The structure of the D4 flames is markedly different from hydrocarbon flames. The temperatures and particulate volume fractions very close to the burner surface are much higher than in comparably sized hydrocarbon flames.

1.
Kanakia, M., 1979, “Characterization of Transformer Fluid Pool Fires by Heat Release Rate Calorimetry,” 4th International Conference on Fire Safety, San Francisco, CA.
2.
Buch
,
R. R.
,
1991
, “
Rate of Heat Release and Related Fire Parameters for Silicones
,”
Fire Saf. J.
,
17
, pp.
1
12
.
3.
Buch
,
R.
,
Hamins
,
A.
,
Konishi
,
K.
,
Mattingly
,
D.
, and
Kashiwagi
,
T.
,
1997
, “
Radiative Emission Fraction of Pool Fires Burning Silicone Fluids
,”
Combust. Flame
,
108
, pp.
118
126
.
4.
Ulrich
,
G. D.
, and
Subramanian
,
N. S.
,
1977
, “
Particle Growth in Flames III. Coalescence as a Rate-Controlling Process
,”
Combust. Sci. Technol.
,
17
, pp.
119
126
.
5.
Zachariah
,
M. R.
,
Chin
,
D.
, and
Semerjian
,
H. G.
,
1989
, “
Silica Particle Synthesis in a Counterflow Diffusion Flame Reactor
,”
Combust. Flame
,
78
, pp.
287
298
.
6.
Tokuhashi
,
K.
,
Horiguchi
,
S.
,
Urano
,
Y.
, and
Kondo
,
S.
,
1990
, “
Premixed Disilane-Oxygen-Nitrogen Flames
,”
Combust. Flame
,
81
, pp.
317
324
.
7.
Allendrof
,
M. D.
,
Melius
,
C. F.
,
Ho
,
P.
, and
Zachariah
,
M. R.
,
1995
, “
Theoretical Study of the Thermochemistry of Molecules in the Si-O-H System
,”
J. Phys. Chem.
,
99
, pp.
15285
15293
.
8.
Britton, L. G., 1989, “Combustion Hazards of Silane and Its Chlorides,” Paper 12b, Loss Prevention Symposium, AIChE Spring National Meeting and Petrochemical EXPO’89, Houston, TX.
9.
Lipowitz
,
J.
,
1976
, “
Flammability Properties of Poly(dimethylsiloxane). 1. A Model for Combustion
,”
J. Fire Flam.
,
7
, pp.
482
503
.
10.
Sivathanu
,
Y. R.
,
Gore
,
J. P.
, and
Dollinar
,
J.
,
1991
, “
Transient Scalar Properties of Strongly Radiating Jet Flames
,”
Combust. Sci. Technol.
,
76
, pp.
45
66
.
11.
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
,
1992
, “
Transient Structure and Radiation Properties of Strongly Radiating Buoyant Flames
,”
ASME J. Heat Transfer
,
114
, pp.
659
665
.
12.
Zeng
,
J. S. Q.
,
Greif
,
R.
,
Stevens
,
P.
,
Ayers
,
M.
, and
Hunt
,
A.
,
1996
, “
Effective Optical Constants n and k and Extinction Coefficient of Silica Aerogels
,”
J. Mater. Res.
,
11
, pp.
687
693
.
13.
Mulholland, G. W., and Choi, M. Y., 1998, “Measurement of the Mass Specific Extinction Coefficient for Acetylene and Ethene Smoke Using the Large Agglomerate Optics Facility,” Twenty-Seventh Symposium (Int.) on Combustion, The Combustion Institute, pp. 1515–1522.
14.
Patterson
,
E. M.
,
Duckworth
,
R. M.
,
Wyman
,
C. M.
,
Powell
,
E. A.
, and
Gooch
,
J. W.
,
1991
, “
Measurement of Optical Properties of Smoke Emission from Plastics, Hydrocarbons and other Urban Fuels for Nuclear Winter Studies
,”
Atmos. Environ.
,
25
, pp.
2539
2552
.
15.
Mulholland
,
G. W.
, and
Bryner
,
N. P.
,
1994
, “
Radiometric Model of the Transmission Cell-Reciprocal Nephelometer
,”
Atmos. Environ.
,
28
, pp.
873
887
.
16.
Zhu, J., Choi, M. Y., and Mulholland, G. W., 2000, “Soot Scattering in the Visible and Near-Infrared Spectrum,” Twenty-Eigth Symposium (Int.) on Combustion, The Combustion Institute, pp. 439–446.
17.
International Organization of Standardization 1993, Guide to the Expression of Uncertainty in Measurement, Geneve, Switzerland.
18.
Choi, M. Y., Hamins, A., Rushmeier, H., and Kashiwagi, T., 1994, “Simultaneous Optical Measurement of Soot Volume Fraction, Temperature and CO2 in a Heptane Pool Fire,” Twenty-Fifth Symposium (Int.) on Combustion, The Combustion Institute, pp. 1471–1480.
19.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, Washington, DC.
20.
Sivathanu
,
Y. R.
,
Gore
,
J. P.
,
Jenssen
,
J.
, and
Senser
,
D. W.
,
1993
, “
A Study of In-situ Specific Absorption Coefficients of Soot Particles in Laminar Flat Flames
,”
ASME J. Heat Transfer
,
115
, pp.
653
658
.
21.
Habib
,
Z. G.
, and
Vervisch
,
P.
,
1988
, “
On the Refractive Index of Soot at Flame Temperature
,”
Combust. Sci. Technol.
,
59
, pp.
261
274
.
22.
Galbraith Laboratory, 1995, “Report of Elemental Analysis for Carbon and Hydrogen.”
23.
Dow Corning Corp., 1995, “Report of Elemental Analysis for Silicon.”
24.
Dalzell
,
W. H.
, and
Sarofim
,
A. F.
,
1969
, “
Optical Constants of Soot and their Application to Heat Flux Calculations
,”
ASME J. Heat Transfer
,
91
, pp.
100
104
.
25.
Gordon, S., and McBride, B., 1976, “Computer Program for the Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouget Detonations,” NASA Special Publication, No. SP-273.
26.
Sivathanu, Y. R., 1990, “Soot and Radiation Properties of Buoyant Turbulent Diffusion Flames,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
You do not currently have access to this content.