This paper describes the development of embedded droplet impingement for integrated cooling of electronics (EDIFICE), which seeks to develop an integrated droplet impingement cooling device for removing chip heat fluxes over 100W/cm2, employing latent heat of vaporization of dielectric fluids. Micromanufacturing and microelectromechanical systems are used as enabling technologies for developing innovative cooling schemes. Microspray nozzles are fabricated to produce 50–100 μm droplets coupled with surface texturing on the backside of the chip to promote droplet spreading and effective evaporation. This paper examines jet impingement cooling of EDIFICE with a dielectric coolant and the influence of fluid properties, microspray characteristics, and surface evaporation. The development of micronozzles and microstructured surface texturing is discussed. Results of a prototype testing of swiss-roll swirl nozzles with dielectric fluid HFE-7200 on a notebook PC are presented. This paper also outlines the challenges to practical implementation and future research needs.

1.
Park, K. A., and Bergles, A. E., 1986, “Boiling Heat Transfer Characteristics of Simulated Microelectronic Chips with Detachable Heat Sinks,” Proc. 8th International Heat Transfer Conference, Hemisphere Publishing Co., Washington, DC, 4, pp. 2099–2104.
2.
Park
,
K. A.
, and
Bergles
,
A. E.
,
1988
, “
Effects of Size of Simulated Microelectronic Chips on Boiling and Critical Heat Flux
,”
J. Heat Transfer
,
10
, pp.
728
734
.
3.
Bergles, A. E., and Kim, C. J., 1988, “A Method to Reduce Temperature Overshoots in Immersion Cooling of Electronic Devices,” Proc. InterSociety Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components, IEEE, New York, NY, pp. 100–105.
4.
Carvalho, R. D. M., and Bergles, A. E., 1990, “The Influence of Subcooling on the Pool Nucleate Boiling and Critical Heat Flux of Simulated Electronic Chips,” Proc. 9th International Heat Transfer Conference, Hemisphere Publishing Co., New York, NY, pp. 289–294.
5.
Park, K. A., Bergles, A. E., and Danielson, R. D., 1990, “Boiling Heat Transfer Characteristics of Simulated Microelectronic Chips with Fluorinert Liquids,” Heat Transfer in Electronic and Microelectronic Equipment, Bergles, A. E. ed., Hemisphere Publishing Co., New York, NY, pp. 573–588.
6.
Bergles, A. E., and Bar-Cohen, A., 1990, “Direct Liquid Cooling of Microelectronic Components,” Advances in Thermal Modeling of Electronic Components and Systems, Kraus, A. D. ed., ASME Press, NY, pp. 233–250.
7.
Ma, C. F., and Bergles, A. E., 1983, “Boiling Jet Impingement Cooling of Simulated Microelectronic Chips Heat Transfer in Electronic Equipment,” Proc. Heat Transfer in Electronic Equipment, ASME, HTD-28, pp. 5–12.
8.
Golobic, I., and Bergles, A. E., 1992, “Effects of Thermal Properties and Thickness of Horizontal Vertically Oriented Ribbon Heaters on the Pool Boiling Critical Heat Flux,” Proc. Engineering Foundation Conference on Pool and External Flow Boiling, ASME, pp. 213–218.
9.
Zitz, J. A., and Bergles, A. E., 1993, “Immersion Cooling of a Multichip Module by Pool Boiling of FC-86,” Proc. ASME International Electronics Packaging Conference, ASME, pp. 917–926.
10.
Incropera, F. P., 1990, “Liquid Immersion Cooling of Electronic Components,” Heat Transfer in Electronic and Microelectronic Equipment, Bergles, A. E. ed., Hemisphere Publishing Co., New York, NY, pp. 407–444.
11.
Bar-Cohen
,
A.
,
1993
, “
Thermal Management of Electronic Components with Dielectric Liquids
,”
Int. J. JSME
,
36
(
1
), pp.
1
25
.
12.
Peterson, G. P., 1994, An Introduction to Heat Pipes, Wiley, New York, NY.
13.
Haider
,
S. I.
,
Joshi
,
Y. K.
, and
Nakayama
,
W.
,
2002
, “
A Natural Circulation Model of the Closed Loop, Two-Phase Thermosyphon for Electronics Cooling
,”
J. Heat Transfer
,
124
(
5
), pp.
881
890
.
14.
Palm, B., and Tengblad, N., 1996, “Cooling of Electronics by Heat Pipes and Thermosyphons-A Review of Methods and Possibilities,” Proc. 31st National Heat Transfer Conference, ASME, HTD-329, pp. 97–108.
15.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
EDL-2
(
5
), pp.
126
129
.
16.
Bower
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.
17.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
,
1992
, “
Heat Sink Optimization with Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
15
, pp.
832
842
.
18.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in Single-Phase Micro-channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
19.
Bergles
,
A. E.
,
Lienhard
,
V. J. H.
,
Kendall
,
G. E.
, and
Griffith
,
P.
,
2003
, “
Boiling and Evaporation in Small Diameter Channels
,”
Heat Transfer Eng.
,
24
(
1
), pp.
18
40
.
20.
Peng
,
X. F.
, and
Wang
,
B. X.
,
1993
, “
Forced-Flow Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.
21.
Stevens
,
J.
, and
Webb
,
B. W.
,
1989
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-phase Liquid Jet
,”
J. Heat Transfer
,
113
(
1
), pp.
71
78
.
22.
Womac, D. J., Aharoni, G., Ramadhyani, S., and Incropera, F. P., 1990, “Single-phase Liquid Jet Impingement Cooling of Small Heat Sources, Heat Transfer,” Proc. International Heat Transfer Conference, pp. 149–154.
23.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1993
, “
Correlating Equations for Impingement Cooling of Small Heat Sources with Single Circular Liquid Jets
,”
J. Heat Transfer
,
115
(
1
), pp.
106
115
.
24.
Womac
,
D. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
,
1994
, “
Correlating Equations for Impingement Cooling of Small Heat Sources with Multiple Circular Liquid Jets
,”
J. Heat Transfer
,
116
(
2
), pp.
482
486
.
25.
Maddox
,
D. E.
, and
Bar-Cohen
,
A.
,
1994
, “
Thermofluid Design of Single-phase Submerged Jet Impingement Cooling for Electronic Components
,”
J. Electron. Packag.
,
116
(
3
), pp.
237
240
.
26.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
pp.
1
60
.
27.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-dimensional Jets of Dielectric Liquid
,”
J. Heat Transfer
,
112
(
4
), pp.
891
898
.
28.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
J. Heat Transfer
,
115
(
1
), pp.
91
98
.
29.
Liu, X., and Lienhard, J. H., 1989, “Liquid Jet Impingement Heat Transfer on a Uniform Flux Surface, Heat Transfer Phenomena in Radiation,” Proc. Heat Transfer Phenomena in Radiation, Combustion, and Fires, ASME, HTD-106, pp. 523–530.
30.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
J. Heat Transfer
,
113
(
3
), pp.
571
581
.
31.
Liu
,
X.
,
Gabour
,
L. A.
, and
Lienhard
,
J. H.
,
1993
, “
Stagnation Point Heat Transfer During Liquid Jet Impingement: Analysis with Surface Tension
,”
J. Heat Transfer
,
115
(
1
), pp.
99
105
.
32.
Nonn, T., Dagan, Z., and Jiji, L. M., 1989, “Jet Impingement Flow Boiling of a Mixture of FC-72 and FC-87 Liquids on a Simulated Electronic Chip,” Proc. Heat Transfer in Electronics of National Heat Transfer Conference, ASME, HTD-111, pp. 121–128.
33.
Nakayama
,
W.
, and
Copeland
,
D.
,
1994
, “
Heat Transfer from Chips to Dielectric Coolant: Enhanced Pool Boiling Versus Jet Impingement Cooling
,”
J. Enhanced Heat Transfer
,
1
(
3
), pp.
231
243
.
34.
Copeland
,
D.
,
1998
, “
Single-phase and Boiling Cooling of a Small Heat Source by Multiple Nozzle Jet Impingement
,”
Int. J. Heat Mass Transfer
,
39
(
7
), pp.
1395
1406
.
35.
Ma
,
C. F.
,
Gan
,
Y. P.
,
Tian
,
Y. C.
,
Lei
,
D. H.
, and
Gomi
,
T.
,
1993
, “
Liquid Jet Impingement Heat Transfer With or Without Boiling
,”
J. Therm. Sci.
,
2
(
1
), pp.
32
49
.
36.
Wang, D., Yu, E., and Przekwas, A., 1999, “A Computational Study of Two-phase Jet Impingement Cooling of an Electronic Chip,” Proc. 15th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, IEEE, New York, pp. 10–15.
37.
Ravigururajan
,
T. S.
, and
Bergles
,
A. E.
,
1994
, “
Visualization of Flow Phenomena Near Enhanced Surfaces
,”
J. Heat Transfer
,
116
(
1
), pp.
54
57
.
38.
Reid
,
R. S.
,
Pate
,
M. B.
, and
Bergles
,
A. E.
,
1991
, “
A Comparison of Augmentation Techniques During In-tube Evaporation of R-113
,”
J. Heat Transfer
,
113
(
2
), pp.
451
458
.
39.
Thome, J. R., 1990, Enhanced Boiling Heat Transfer, Hemisphere Publishing Co., New York, NY.
40.
Web, R. L., 1994, Principles of Enhanced Heat Transfer, Wiley, New York, NY.
41.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhancement Boiling Heat Transfer on Porous Surfaces, Part I: Experimental Investigation
,”
J. Heat Transfer
,
102
(
3
), pp.
445
450
.
42.
Nakayama
,
W.
,
Nakajima
,
T.
, and
Hirasawa
,
S.
,
1984
, “
Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling Microelectronic Components
,”
ASME
,
84-WA/HT-89
.
43.
Miller, W. J., 1991, “Boiling and Visualization from Microconfigured Surfaces,” M.S. thesis, Univ. of Pennsylvania, Philadelphia, PA.
44.
Bhavnani
,
S. H.
,
Tsai
,
C. P.
,
Jaeger
,
R. C.
, and
Eison
,
D. L.
,
1993
, “
An Integral Heat Sink for Cooling Microelectronic Components
,”
J. Electron. Packag.
,
115
(
3
), pp.
284
291
.
45.
Sullivan, J., Ramadhyani, S., and Incropera, F. P., 1992, “Use of Smooth and Roughened Spreader Plates to Enhance Impingement Cooling of Small Heat Sources with Single Circular Jets,” Proc. 28th National Heat Transfer Conference and Exhibition, ASME, HTD-206(2), pp. 103–110.
46.
Teuscher, K. L., Ramadhyani, S., and Incropera, F. P., 1993, “Jet Impingement Cooling of an Array of Discrete Heat Sources with Extended Surfaces,” Proc. Enhanced Cooling Techniques for Electronics Applications, ASME, HTD-263, pp. 1–10.
47.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1992
, “
Enhancement of Single-phase Heat Transfer and Critical Heat Flux from an Ultra-high-flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
J. Heat Transfer
,
114
(
3
), pp.
764
768
.
48.
Yao, S. C., Deb, S., and Hammouda, N., 1989, “Impact Spray Boiling for Thermal Control of Electronic Systems,” Proc. Heat Transfer in Electronics of National Heat Transfer Conference, ASME, HTD-111, pp. 129–133.
49.
Pais
,
M. R.
,
Chow
,
L. C.
, and
Mahefkey
,
E. T.
,
1992
, “
Surface Roughness and its Effects on the Heat Transfer Mechanism in Spray Cooling
,”
J. Heat Transfer
,
114
(
1
), pp.
211
219
.
50.
Sehmbey
,
M. S.
,
Pais
,
M. R.
, and
Chow
,
L. C.
,
1992
, “
Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling
,”
J. Thermophys. Heat Transfer
,
6
(
3
), pp.
505
512
.
51.
Estes
,
K. A.
, and
Mudawar
,
I.
,
1995
, “
Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays
,”
J. Electron. Packag.
,
117
, pp.
323
332
.
52.
Amon
,
C. H.
,
Murthy
,
J. Y.
,
Yao
,
S. C.
,
Narumanchi
,
S.
,
Wu
,
C. F.
, and
Hsieh
,
C. C.
,
2001
, “
MEMS-Enabled Thermal Management of High-Heat-Flux Devices, Edifice: Embedded Droplet Impingement for Integrated Cooling of Electronics
,”
J. Exp. Thermal Fluid Sci.
,
25
(
5
), pp.
231
242
.
53.
Kim
,
J. H.
,
You
,
S. M.
,
Stephen
,
U. S.
, and
Choi
,
U. S.
,
2004
, “
Evaporative Spray Cooling of Plain and Microporous Coated Surface
,”
Int. J. Heat Mass Transfer
,
47
(14–16), pp.
3307
3315
.
54.
Cho, C. S. K., and Wu, K., 1988, “Comparison of Burnout Characteristics in Jet Impingement Cooling and Spray Cooling,” Proc. 1988 National Heat Transfer Conference, ASME, HTD-96, pp. 561–567.
55.
Toda
,
S.
,
1974
, “
A Study of Mist Cooling (2nd Report: Theory of Mist Cooling and its Fundamental Experiments)
,”
Heat Transfer-Jpn. Res.
,
3
(
1
), pp.
1
44
.
56.
Fedder
,
G. K.
,
Santhanam
,
S.
,
Reed
,
M. L.
,
Eagle
,
S. C.
,
Guillou
,
D. F.
,
Lu
,
M. S.-C.
, and
Carley
,
L. R.
,
1996
, “
Laminated High-Aspect-Ratio Microstructures in a Conventional CMOS Process
,”
Sens. Actuators, A
,
57
(
2
), pp.
103
110
.
57.
Murthy, J. Y., Amon, C. H., Gabriel, K., Kumta, P., Yao, S. C., Boyalakuntla, D., Hsieh, C. C., Jain, A., Narumanchi, S. V. J., Rebello, K., and Wu, C. F., 2001, “MEMS-based Thermal Management of Electronics Using Spray Impingement,” Proc. Pacific Rim/International, Intersociety Electronic Packaging Technical/Business Conference and Exhibition, ASME, pp. 1–12.
58.
Narumanchi
,
S. V. J.
,
Amon
,
C. H.
, and
Murthy
,
J. Y.
,
2003
, “
Influcence of Pulsating Submerged Liquid Jets on Chip-Level Thermal Phenomena
,”
ASME J. Electron. Packag.
125
(
3
), pp.
354
361
.
59.
Yao, S. C., Amon, C. H., Gabriel, K., Kumta, P., Murthy, J. Y., Wu, C. F., Hsieh, C. C., Boyalakuntla, D., Narumanchi, S. V. J., and Rebello, K., 2001, “MEMS-Enabled Micro Spray Cooling System for Thermal Control of Electronic Chips,” Proc. ASME International Mechanical Engineering Congress and Exposition, HTD-369(7), pp. 181–192.
60.
Wu, C. F., and Yao, S. C., 2001, “Breakup of Liquid Jets from Irregular Shaped Silicon Micro Nozzles,” Proc. 4th Int. Conf. on Multiphase Flow.
61.
Wu
,
C. F.
,
Erdmann
,
L.
,
Gabriel
,
K.
, and
Yao
,
S. C.
,
2001
, “
Fabrication of Silicon Sidewall Profiles for Fluidic Applications Using Modified Advanced Silicon Etching,” Proc. MEMS Design, Fabrication, Characterization, and Packaging
,
Proc. SPIE
,
4407
, pp.
100
108
.
62.
Leoni
,
N.
, and
Amon
,
C. H.
,
1997
, “
Transient Thermal Design of Wearable Computers with Embedded Electronics Using Phase Change Materials
,”
ASME
,
HTD-343
(
5
), pp.
49
56
.
63.
Vesligaj
,
M.
, and
Amon
,
C. H.
,
1999
, “
Transient Thermal Management of Temperature Fluctuations during Time Varying Workloads on Portable Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
4
), pp.
541
550
.
64.
Alawadhi, E. M., and Amon, C. H., 2000, “Performance Analysis of an Enhanced PCM Thermal Control Unit,” Proc. 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1, pp. 283–289.
65.
Leoni
,
N.
, and
Amon
,
C. H.
,
2000
, “
Bayesian Surrogates for Integrating Numerical, Analytical and Experimental Data: Application to Inverse Heat Transfer in Wearable Computers
,”
IEEE Trans. Compo. Packag. Manuf. Technol.
,
23
(
1
), pp.
23
32
.
You do not currently have access to this content.