Heat transfer characteristics around a low aspect ratio cylindrical protuberance placed in a turbulent boundary layer were investigated. The diameters of the protuberance, D, were 40 and 80mm, and the height to diameter aspect ratio HD ranged from 0.125 to 1.0. The Reynolds numbers based on D ranged from 1.1×104 to 1.1×105 and the thickness of the turbulent boundary layer at the protuberance location, δ, ranged from 26 to 120mm for these experiments. In this paper we detail the effects of the boundary layer thickness and the protuberance aspect ratio on heat transfer. The results revealed that the overall heat transfer for the cylindrical protuberance reaches a maximum value when Hδ=0.24.

1.
Okamoto
,
S.
, and
Yagita
,
M.
, 1984, “
Flow Past Circular Cylinder of Finite Length Placed Normal to Ground Plane in Uniform Shear Flow
,”
Bull. JSME
0021-3764,
27
(
229
), pp.
1454
1459
.
2.
Kawamura
,
T.
,
Hiwada
,
M.
,
Hibino
,
T.
,
Mabuchi
,
I.
, and
Kumada
,
X.
, 1984, “
Flow Around a Finite Circular Cylinder on a Flat Plate (Cylinder Height Greater Than Turbulent Boundary Layer Thickness)
,”
Bull. JSME
0021-3764,
27
(
232
), pp.
2142
2151
.
3.
Sakamoto
,
H.
, and
Arie
,
M.
, 1983, “
Vortex Shedding From a Rectangular Prism and a Circular Cylinder Placed Vertically in a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
126
, pp.
147
165
.
4.
Park
,
C. W.
, and
Lee
,
S. J.
, 2000, “
Free end Effect on the Near Wake Flow Structure Behind a Finite Circular Cylinder
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
88
, pp.
231
246
.
5.
Okamoto
,
S.
, 1991, “
Flow Past Circular Cylinder of Finite Length
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
0549-3811,
33-102
, pp.
234
246
.
6.
Zdravkovich
,
M. M.
,
Brand
,
V. P.
,
Mathew
,
G.
, and
Weston
,
A.
, 1989, “
Flow Past Short Circular Cylinders With Two Free Ends
,”
J. Fluid Mech.
0022-1120,
203
, pp.
557
575
.
7.
Tsutsui
,
T.
,
Igarash
,
T.
, and
Nakamura
,
H.
, 2000, “
Fluid Flow and Heat Transfer Around a Cylindrical Protuberance Mounted on a Flat Plate Boundary Layer
,”
JSME Int. J., Ser. A
1340-8046,
43
(
2
), pp.
279
287
.
8.
Goldstein
,
R. J.
, and
Karni
,
J.
, 1984, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Cross-Flow
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481
106
, pp.
260
267
.
9.
Sparrow
,
E. M.
,
Stahl
,
T. J.
, and
Traub
,
P.
, 1984, “
Heat Transfer Adjacent to the Attached End of a Cylinder in Cross-Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
27-2
, pp.
233
242
.
10.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
, 6th ed.,
McGraw-Hill
, New York, pp.
534
and 601–
602
.
11.
Kline
,
S. J.
, 1985, “
The Purposes of Uncertainty Analysis
,”
ASME Trans. J. Fluids Eng.
0098-2202,
107
, pp.
153
160
.
12.
Nakamura
,
H.
,
Igarashi
,
T.
, and
Tsutsui
,
T.
, 2001, “
Local Heat Transfer Around a Wall-Mounted Cube in the Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3385
3395
.
13.
Nakamura
,
H.
,
Igarashi
,
T.
, and
Tsutsui
,
T.
, 2003, “
Local Heat Transfer Around a Wall-Mounted Cube at 45° to Flow in a Turbulent Boundary Layer
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
807
815
.
14.
Lehmann
,
G. L.
, and
Pembroke
,
J.
, 1991, “
Forced Convection Air Cooling of Simulated Low Profile Electronic Components: Part 1—Base Case
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
21
26
.
You do not currently have access to this content.