We have measured the thermal resistance of a 152nm-diameter carbon nanofiber before and after a platinum layer was deposited on the contacts between the nanofiber and the measurement device. The contact resistance was reduced by the platinum coating for about 9–13% of the total thermal resistance of the nanofiber sample before the platinum coating. At a temperature of 300K, the axial thermal conductivity of the carbon nanofiber is about three times smaller than that of graphite fibers grown by pyrolysis of natural gas prior to high-temperature heat treatment, and increases with temperature in the temperature range between 150K and 310K. The phonon mean free path was found to be about 1.5nm and approximately temperature-independent. This feature and the absence of a peak in the thermal conductivity curve indicate that phonon-boundary and phonon-defect scattering dominate over phonon-phonon Umklapp scattering for the temperature range.

1.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
, 1970,
Thermal Conductivity: Nonmetallic Solid, Thermophysical Properties of Matter
,
Plenum
,
NY
, Vol.
2
.
2.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
NY
.
3.
Heremans
,
J.
, and
Beetz
,
C. P.
Jr.
, 1985, “
Thermal Conductivity and Thermopower of Vapor-grown Graphite Fibers
,”
Phys. Rev. B
0163-1829,
32
, pp.
1981
1986
.
4.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Eklund
,
P. C.
, 1996,
Science of Fullerenes and Carbon Nanotubes
,
Academic
,
New York
.
5.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
, pp.
215502
(1-4).
6.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
, and
Johnson
,
A. T.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
, 2000, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
0003-6951,
77
(
5
), pp.
666
668
.
7.
Shi
,
L.
,
Li
,
D.
,
Yu
,
C.
,
Jang
,
W.
,
Yao
,
Z.
,
Kim
,
P.
, and
Majumdar
,
A.
, 2003, “
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
,”
J. Heat Transfer
0022-1481,
125
, pp.
881
888
.
8.
Chuang
,
H. F.
,
Cooper
,
S. M.
,
Meyyappan
,
M.
, and
Cruden
,
B. A.
, 2004, “
Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers
,”
J. Nanosci. Nanotechnol.
1533-4880,
4
(
8
), pp.
964
967
.
9.
Ngo
,
Q.
,
Cruden
,
B. A.
,
Cassell
,
A. M.
,
Walker
,
M. D.
,
Ye
,
Q.
,
Koehne
,
J. E.
,
Meyyappan
,
M.
,
Li
,
J.
, and
Yang
,
C. Y.
, 2004, “
Thermal Conductivity of Carbon Nanotube Composite Films
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
812
,
F3.18.1
6
.
10.
Ngo
,
Q.
,
Cruden
,
B. A.
,
Cassell
,
A. M.
,
Sims
,
G.
,
Meyyappan
,
M.
,
Li
,
J.
, and
Yang
,
C. Y.
, 2004, “
Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays
,”
Nano Lett.
1530-6984,
4
(
12
), pp.
2403
2407
.
11.
Xu
,
J.
, and
Fisher
,
T. S.
, 2004, “
Enhanced Thermal Contact Conductance using Carbon Nanotube Arrays
,”
The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, ITHERM'04,
2
, pp.
549
555
.
12.
Xu
,
J.
, and
Fisher
,
T. S.
, 2004, “
Thermal Contact Conductance Using Carbon Nanotube Arrays
,” in
Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition
,
Anaheim
,
CA
, IMECE2004–60185, pp.
1
5
.
13.
Cruden
,
B. A.
,
Cassell
,
A. M.
,
Ye
,
Q.
, and
Meyyappan
,
M.
, 2003, “
Reactor Design Consideration in the Hot Filament∕Direct Current Plasma Synthesis of Carbon Nanofibers
,”
J. Appl. Phys.
0021-8979,
94
, pp.
4070
4078
.
14.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1999,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
NY
.
15.
Brown
,
K. K.
,
Coleman
,
H. W.
, and
Steele
,
W. Gl.
, 1998, “
A Methodology for Determining Experimental Uncertainties in Regressions
,”
J. Fluids Eng.
0098-2202,
120
, pp.
445
456
.
16.
Bahadur
,
V.
,
Xu
,
J.
,
Liu
,
Y.
, and
Fisher
,
T. S.
, 2005, “
Thermal Resistance of Nanowire-Plane Interfaces
,”
J. Heat Transfer
0022-1481,
127
, pp.
664
668
.
17.
McGee
,
G. R.
,
Schankula
,
M. H.
, and
Yovanovich
,
M. M.
, 1985, “
Thermal Resistance of Cylinder-Flat Contacts: Theoretical Analysis and Experimental Verification of a Line-Contact Model
,”
Nucl. Eng. Des.
0029-5493,
86
, pp.
369
381
.
18.
Visser
,
J.
, 1989, “
van der Waals and Other Cohesive Forces Affecting Powder Fluidization
,”
Powder Technol.
0032-5910,
58
, pp.
1
10
.
19.
Israelachvili
,
J. N.
, 1992,
Intermolecular and Surface Forces
,
Academic
,
London, UK
.
20.
Bondi
,
A.
, 1964, “
van der Waals and Other Cohesive Forces Affecting Powder Fluidization
,”
Powder Technol.
0032-5910,
58
, pp.
1
10
.
21.
Wexler
,
G.
, 1966, “
The Size Effect and the Non-local Boltzmann Transport Equation in Orifice and Disk Geometry
,”
Proc. Phys. Soc. London
0370-1328,
89
,
927
(1966).
22.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
, 1970,
Thermophysical Properties of Matter
,
Plenum
,
NY
, Vol.
5
.
You do not currently have access to this content.