The drag and convective heat transfer coefficients along the outer surface of lenticular and elliptical tubes with minor-to-major axis ratios of 0.3, 0.5, and 0.8 were determined numerically for cross-flow Reynolds numbers from 500 to 104. The two-dimensional, unsteady Navier-Stokes equations and energy equation were solved using the finite volume method. Laminar flow was assumed from the front stagnation point up to the point of separation. Turbulent flow in the wake was resolved using the shear stress transport k-ω model. Local heat transfer, pressure and friction coefficients as well as the total drag coefficient and average Nusselt number are presented. The results for streamlined tubes are compared to published data for circular and elliptical cylinders. Drag of the elliptical and lenticular cylinders is similar and lower than a circular cylinder. Drag can be reduced by making the streamlined cylinders more slender. Drag is relatively insensitive to Reynolds number over the range studied. An elliptical cylinder with an axis ratio equal to 0.5 reduces pressure drop by 30–40% compared to that of a circular cylinder. The Nusselt numbers of lenticular and elliptical cylinders are comparable. The average Nusselt number of an elliptical or lenticular cylinder with axis ratio of 0.5 and 0.3 is 15–35% lower than that of a circular cylinder.

1.
Bigg
,
D. M.
,
Stickford
,
G. H.
, and
Talbert
,
S. G.
, 1989, “
Applications of Polymeric Materials for Condensing Heat Exchangers
,”
Polym. Eng. Sci.
0032-3888,
29
(
16
), pp.
1111
1116
.
2.
Davidson
,
J. H.
,
Oberreit
,
D.
,
Liu
,
W.
, and
Mantell
,
S. C.
, 1999, “
Are Plastic Heat Exchangers Feasible for Solar Water Heaters? Part I: A Review of the Technology, Codes and Standards, and Commercial Products
,”
ASME/KSME/JSME/ASHRAE/JSES International Renewable and Advanced Energy Systems for the 21st Century
, CD-ROM, RAES99-7683, Maui, Hawaii.
3.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
, 1999, “
Plastic/Compact Heat Exchangers for Single-Effect Desalination Systems
,”
Desalination
0011-9164,
122
(
2–3
), pp.
271
289
.
4.
Jachuck
,
R. J. J.
, and
Ramshaw
,
C.
, 1994, “
Process Intensification: Polymer Film Compact Heat Exchanger (PFCHE)
,”
Chem. Eng. Res. Des.
0263-8762,
72
(
A2
), pp.
255
262
.
5.
Li
,
Z.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
, 2005, “
Mechanical Analysis of Streamlined Tubes with Nonuniform Wall Thickness for Heat Exchangers
,”
J. Strain Anal. Eng. Des.
0309-3247,
40
(
3
), pp.
275
285
.
6.
Li
,
Z.
,
Davidson
,
J. H.
, and
Mantell
,
S. M.
, 2004, “
Heat Transfer Enhancement Using Shaped Polymer Tubes: Fin Analysis
,”
J. Heat Transfer
0022-1481,
126
(
2
), pp.
211
218
.
7.
Delany
,
N.
, and
Sorensen
,
N.
, 1953, “
Low Speed Drag of Cylinders of Various Shapes
,” NACA Technical Note, Report No. 3038.
8.
Zukauskas
,
A.
, and
Ziugzda
,
J.
, 1985,
Heat Transfer of a Cylinder in Crossflow
,
Hemisphere
,
150
.
9.
Badr
,
H. M.
,
Dennis
,
S. C. R.
, and
Kocabiyik
,
S.
, 2001, “
Numerical Simulation of the Unsteady Flow Over an Elliptic Cylinder at Different Orientations
,”
Int. J. Opt. Comput.
1047-8507,
37
(
8
), pp.
905
931
.
10.
Ota
,
T.
, and
Nishiyama
,
H.
, 1984, “
Heat Transfer and Flow Around an Elliptic Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
10
), pp.
1771
1779
.
11.
Hoerner
,
S. F.
, 1965,
Fluid-Dynamic Drag
,
Hoerner Fluid Dynamics
,
Midland Park, NJ
.
12.
Ota
,
T.
,
Aiba
,
S.
,
Tsuruta
,
T.
, and
Kaga
,
M.
, 1983, “
Forced Convection Heat Transfer from an Elliptic Cylinder of Axis Ratio 1:2
,”
Bull. JSME
0021-3764,
26
(
212
), pp.
262
267
.
13.
Knoblauch
,
O.
, and
Reiher
,
H.
, 1925, “
Waermeuebertragung
,”
Handbuch der Experimentalphysik
,
W.
Wien
and
F.
Harms
, eds.,
9
(
1
), p.
189
.
14.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
15.
Behr
,
M.
,
Hastreiter
,
D.
,
Mittal
,
S.
, and
Tezduyar
,
T. E.
, 1995, “
Incompressible Flow Past a Circular Cylinder: Dependence of the Computed Flow Field on the Location of the Lateral Boundaries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
123
(
1–4
), pp.
309
316
.
16.
Reichel
,
C.
, and
Strohmeier
,
K.
, 2003, “
Circular Cylinder Exposed to Cross Flow Fluid Forces-Parameters of Influence-Limits of Numerical Models
,”
ASME Pressure Vessels and Piping Conference, American Society of Mechanical Engineers
, Cleveland, OH, pp.
35
44
.
17.
Abdulhadi
,
M.
, 1989, “
Boundary Layer Calculations on Cylinders of Rankine-Oval Sections
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
13
(
3
), pp.
65
68
.
18.
Knauss
,
D. T.
,
John
,
J. E. A.
, and
Marks
,
C. H.
, 1976, “
Vortex Frequencies of Bluff Cylinders at Low Reynolds Numbers
,”
J. Hydronaut.
0022-1716,
10
(
4
), pp.
121
126
.
19.
Ratliff
,
C. L.
, 1992, “
Vortex Shedding Frequencies of Elliptical Cylinders in the Irregular Reynolds Number Region
,”
Winter Annual Meeting of the American Society of Mechanical Engineers
, 8–13 Nov.
ASME
,
New York, NY, Anaheim CA
, pp.
53
60
.
20.
Modi
,
V. J.
, and
Dikshit
,
A. K.
, 1975, “
Near Wakes of Elliptic Cylinders in Subcritical Flow
,”
AIAA J.
0001-1452,
13
(
4
), pp.
490
497
.
21.
Modi
,
V. J.
, and
Wiland
,
E.
, 1970, “
Unsteady Aerodynamics of Stationary Elliptic Cylinders in Subcritical Flow
,”
AIAA J.
0001-1452,
8
(
10
), pp.
1814
1821
.
22.
Wieselsberger
,
E.
, 1921, “
Neuere Feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstandes
,”
Phys. Z.
0369-982X,
22
, pp.
321
328
.
You do not currently have access to this content.