Numerical and experimental studies were conducted to investigate the heat transfer, fluid flow, and keyhole dynamics during a pulsed keyhole laser welding. A comprehensive mathematical model has been developed. In the model, the continuum formulation was used to handle solid phase, liquid phase, and mushy zone during melting and solidification processes. The volume-of-fluid method was employed to handle free surfaces. The enthalpy method was used for latent heat. Laser absorptions (Inverse Bremsstrahlung and Fresnel absorption) and thermal radiation by the plasma in the keyhole were all considered in the model. The results show that the recoil pressure is the main driving force for keyhole formation. Combining with the Marangoni shear force, hydrodynamic force, and hydrostatic force, it causes very complicated melt flow in the weld pool. Laser-induced plasma plays twofold roles in the process: (1) to facilitate the keyhole formation at the initial stage and (2) to block the laser energy and prevent the keyhole from deepening when the keyhole reaches a certain depth. The calculated temperature distributions, penetration depth, weld bead size, and geometry agreed well with the corresponding experimental data. The good agreement demonstrates that the model lays a solid foundation for the future study of porosity prevention in keyhole laser welding.

1.
Semak
,
V. V.
,
Hopkins
,
J. A.
,
McCay
,
M. H.
, and
McCay
,
T. D.
, 1994, “
A Concept for a Hydrodynamic Model of Keyhole Formation and Support During Laser Welding
,”
Proc. ICALEO
, pp.
641
650
, Oct. 17–20, Orlando, FL.
2.
Semak
,
V. V.
,
Hopkins
,
J. A.
,
McCay
,
M. H.
, and
McCay
,
T. D.
, 1994, “
Dynamics of Penetration Depth During Laser Welding
,”
Proc. ICALEO
, pp.
17
20
, Oct. 17–20, Orlando, FL.
3.
Hopkins
,
J. A.
,
McCay
,
T. D.
,
McCay
,
M. H.
, and
Eraslan
,
A.
, 1993, “
Transient Predictions of CO2 Laser Spot Welds in Inconel 718
,”
Proc. ICALEO
, pp.
24
28
, Oct. 24–28, Orlando, FL.
4.
Klemens
,
P. G.
, 1976,
Heat Balance and Flow Conditions for Electron Beam and Laser Welding
,
J. Appl. Phys.
0021-8979,
47
, pp.
2165
2174
.
5.
Allmen
,
M.
, and
Blatter
,
A.
, 1995,
Laser-Beam Interaction with Material
, 2nd ed.,
Springer-Verlag
,
Berlin
.
6.
Solana
,
P.
,
Kapadia
,
P.
, and
Dowden
,
J.
, 1998, “
Surface Depression and Ablation for a Weld Pool in Material Processing: a Mathematical Model
,”
Proc. ICALEO
, Sec. F, pp.
142
147
, Nov. 16–19, Orlando, FL.
7.
Clucas
,
A.
,
Ducharme
,
R.
,
Kapadia
,
P.
,
Dowden
,
J.
, and
Steen
,
W.
, 1998, “
A Mathematical Model of Laser Keyhole Welding Using a Pressure and Energy Balance at the Keyhole Walls
,”
Proc. ICALEO
, Sec. F, pp.
123
131
, Nov. 16–19, Orlando, FL.
8.
Matsunawa
,
A.
,
Kim
,
J.
,
Seto
,
N.
,
Mizutani
,
M.
, and
Katayama
,
S.
, 1998, “
Dynamic of Keyhole and Molten Pool in Laser Welding
,”
J. Laser Appl.
1042-346X,
10
, pp.
247
254
.
9.
Chen
,
M. M.
, and
Bos
,
J. A.
, 1998, “
Melt Flow in Deep Penetration Welding
,”
Proc. ICALEO
, Sec. F, pp.
187
196
, Nov. 16–19, Orlando, FL.
10.
Ducharme
,
R.
,
Williams
,
K.
,
Kapadia
,
P.
,
Dowden
,
J.
,
Steen
,
B.
, and
Glowacki
,
M.
, 1994, “
The Laser Welding of Thin Metal Sheets: an Integrated Keyhole and Weld Pool Model With Supporting Experiments
,”
J. Phys. D
0022-3727,
27
, pp.
1619
1627
.
11.
Sudnik
,
R.
,
Rada
,
D.
,
Breitschwerdt
,
S.
, and
Erofeew
,
W.
, 2000, “
Numerical Simulation of Weld Pool Geometry in Laser Beam Welding
,”
J. Phys. D
0022-3727,
33
, pp.
662
671
.
12.
Kapadia
,
P.
,
Dowden
,
J.
, and
Ducharme
,
R.
, 1996, “
A Mathematical Model of Ablation in the Keyhole and Droplet Formation in the Plume in Deep Penetration Laser Welding
,”
Proc. ICALEO
, Sec. B, pp.
106
114
, Oct. 14–17, Detroit, MI.
13.
Farson
,
D. F.
, and
Kim
,
K. R.
, 1998, “
Simulation of Laser Evaporation and Plume
,”
Proc. ICALEO
, Sec. F, pp.
197
206
, Nov. 16–19, Orlando, FL.
14.
Miyamoto
,
I.
,
Ohmura
,
E.
, and
Maede
,
T.
, 1997, “
Dynamic Behavior of Plume and Keyhole in CO2 Laser Welding
,”
Proc. ICALEO
, Sec. G, pp.
210
218
, Nov. 17–20, San Diego, CA.
15.
Solana
,
P.
, and
Negro
,
G.
, 1997, “
A Study of the Effect of Multiple Reflections on the Shape of the Keyhole in the Laser Processing of Material
,”
J. Phys. D
0022-3727,
30
, pp.
3216
3222
.
16.
Metzbower
,
E. A.
, 1997, “
Absorption in the Keyhole
,”
Proc. ICALEO
, Sec. G, pp.
16
25
, Nov. 17–20, San Diego, CA.
17.
Kothe
,
D. B.
,
Mjolsness
,
R. C.
, and
Torrey
,
M. D.
, 1991, “
Ripple: A Computer Program for Incompressible Flows With Free Surfaces
,” LA-12007-MS,
Los Alamos National Laboratory
.
18.
Chiang
,
K. C.
, and
Tsai
,
H. L.
, 1992, “
Shrinkage-Induced Fluid Flow and Domain Change in Two-Dimensional Alloy Solidification
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1763
1769
.
19.
Dowden
,
J.
,
Postacioglu
,
N.
,
Davis
,
M.
, and
Kapadia
,
P.
, 1987,
J. Phys. D
0022-3727,
20
, pp.
36
44
.
20.
Wang
,
Y.
, and
Tsai
,
H. L.
, 2001, “
Impingement of Filler Droplets and Weld Pool Dynamics During Gas Metal Arc Welding Process
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2067
2080
.
21.
Duley
,
W.
, 1999,
Laser Welding
,
John Wiley & Sons Inc.
,
New York
.
22.
Sahoo
,
P.
,
DeBroy
,
T.
, and
Mcnallan
,
M. J.
, 1988, “
Surface Tension of Binary Metal-Surface Active Solute Systems Under Conditions Relevant to Welding Metallurgy
,”
Metall. Trans. B
0360-2141,
19
, pp.
483
491
.
23.
Choo
,
R. T. C.
,
Szekely
,
J.
, and
David
,
S. A.
, 1992, “
On the Calculation of the Free Surface Temperature of Gas-Tungsten-Arc Weld Pools From First Principles: Part II. Modeling the Weld Pool and Comparison With Experiments
,”
Metall. Trans. B
0360-2141,
23
, pp.
371
384
.
24.
Knight
,
C. J.
, 1979, “
Theoretical Modeling of Rapid Surface Vaporization With Back Pressure
,”
AIAA J.
0001-1452,
17
, pp.
519
523
.
25.
Semak
,
V.
, and
Matsunawa
,
A.
, 1997, “
The Role of Recoil Pressure in Energy Balance During Laser Materials Processing
,”
J. Phys. D
0022-3727,
30
, pp.
2541
2552
.
26.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1980,
Statistical Physics
, 3rd ed.,
Pergamon
,
New York
.
27.
Kaplan
,
A.
, 1994, “
A Model of Deep Penetration Laser Welding Based on Calculation of the Keyhole Profile
,”
J. Phys. D
0022-3727,
27
, pp.
1805
1814
.
28.
Siegel
,
R.
, and
Howell
,
J. R.
, 1992,
Thermal Radiation Heat Transfer
, 3rd ed.,
Hemisphere Publishing Corp.
,
Washington, DC
, Chap. 13.
29.
Ho
,
R.
,
Grigoropoulos
,
C. P.
, and
Humphrey
,
J. A. C.
, 1996, “
Gas Dynamics and Radiation Heat Transfer in the Vapor Plume Produced by Pulsed Laser Irradiation of Aluminum
,”
J. Appl. Phys.
0021-8979,
79
, pp.
7205
7215
.
You do not currently have access to this content.