A numerical model of moist air cooling in compact heat exchangers is presented. The model requires the solution of a coupled problem, since interface temperatures, obtained from the solution of the energy equation in adjacent fluid and solid regions, are used to set the appropriate boundary conditions for the transport equation of water vapor in moist air. The approach is completely general, even if the finite-element method is used for the simulations reported in the paper. The numerical results are favorably compared with the corresponding experimental results concerning the rectangular and wavy fins under dehumidifying conditions.
Issue Section:
Heat and Mass Transfer
1.
Wang
, C. C.
, Hsieh
, Y. C.
, and Lin
, Y. T.
, 1997, “Performance of Plate Finned Tube Heat Exchangers Under Dehumidifying Conditions
,” J. Heat Transfer
0022-1481, 119
, pp. 119
–117
.2.
Wang
, C. C.
, Lin
, Y. T.
, and Lee
, C. J.
, 2000, “Heat and Momentum Transfer for Compact Louvered Fin-and-Tube Heat Exchangers in Wet Conditions
,” Int. J. Heat Mass Transfer
0017-9310, 43
, pp. 3443
–3452
.3.
Wang
, C. C.
, Lee
, W. S.
, Sheu
, W. J.
, and Chang
, Y. J.
, 2001, “Parametric Study of the Air-Side Performance of Slit Fin-and-Tube Heat Exchangers in Wet Conditions
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062, 215
, pp. 1111
–1121
.4.
Pirompugd
, W.
, Wongwises
, S.
, and Wang
, C. C.
, 2005, “A Tube-by-Tube Reduction Method for Simultaneous Heat and Mass Transfer Characteristics for Plain Fin-and-Tube Heat Exchangers in Dehumidifying Conditions
,” Heat Mass Transfer
0947-7411, 41
, pp. 756
–765
.5.
Pirompugd
, W.
, Wongwises
, S.
, and Wang
, C. C.
, 2006, “Simultaneous Heat and Mass Transfer Characteristics for Wavy Fin-and-Tube Heat Exchangers under Dehumidifying Conditions
,” Int. J. Heat Mass Transfer
0017-9310, 49
, pp. 132
–143
.6.
Lin
, Y. T.
, Hsu
, K. C.
, Chang
, Y. J.
, and Wang
, C. C.
, 2001, “Performance of Rectangular Fin in Wet Conditions: Visualization and Wet Fin Efficiency
,” J. Heat Transfer
0022-1481, 123
, pp. 827
–836
.7.
Lin
, Y. T.
, Hwang
, Y. M.
, and Wang
, C. C.
, 2002, “Performance of the Herringbone Wavy Fin Under Dehumidifying Conditions
,” Int. J. Heat Mass Transfer
0017-9310, 45
, pp. 5035
–5044
.8.
Wongwises
, S.
, and Chokeman
, Y.
, 2004, “Effect of Fin-Thickness on the Air-Side Performance of Herringbone Wavy Fin-and-Tube Heat Exchangers
,” Heat Mass Transfer
0947-7411, 41
, pp. 147
–154
.9.
Wongwises
, S.
, Wang
, C. C.
, and Kuvannarat
, T.
, 2006, “Effect of Fin-Thickness on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchangers Under Dehumidifying Conditions
,” Int. J. Heat Mass Transfer
0017-9310, 49
, pp. 2587
–2596
.10.
Comini
, G.
, and Savino
, S.
, 2006, “Latent and Sensible Heat Transfer in Air-Cooling Applications
,” 24th UIT National Heat Transfer Conference, Keynote Lecture
, Edizioni ETS
, Pisa
, pp. 3
–12
.11.
Korte
, C.
, and Jacobi
, A. M.
, 2001, “Condensate Retention Effects on the Performance of Plain-Fin-and-Tube Heat Exchangers: Retention Data and Modeling
,” J. Heat Transfer
0022-1481, 123
, pp. 926
–936
.12.
ElSherbini
, A. I.
, and Jacobi
, A. M.
, 2006, “A Model for Condensate Retention on Plain-Fin Exchangers
,” J. Heat Transfer
0022-1481, 128
, pp. 427
–433
.13.
Hu
, X.
, Zhang
, L.
, and Jacobi
, A. M.
, 1994, “Surface Irregularity Effects of Droplets and Retained Condensate on Local Heat Transfer to Finned Tubes in Cross-Flow
,” ASHRAE Trans.
0001-2505, 118
(1
), pp. 375
–381
.14.
Ramadhyani
, S.
, 1998, “Calculation of Air-Side Heat Transfer in Compact Heat Exchangers Under Condensing Conditions
,” Computer Simulations in Compact Heat Exchangers
, B.
Sunden
and M.
Faghri
, eds., Computational Mechanics, Southampton
, Chap. 6.15.
Comini
, G.
, Nonino
, C.
, and Savino
, S.
, 2005, “Convective Heat and Mass Transfer under Dehumidifying Conditions
,” Progress in Computational Heat and Mass Transfer
, Keynote Lecture Vol. II
, R.
Bennacer
, ed., Editions TEC & DOC
, Lavoisier
, pp. 711
–722
.16.
Comini
, G.
, Nonino
, C.
, and Savino
, S.
, 2007, “Modeling of Coupled Conduction and Convection in Moist Air Cooling
,” Numer. Heat Transfer, Part A
1040-7782, 51
, pp. 23
–37
.17.
Nonino
, C.
, 2003, “A Simple Pressure Stabilization for a SIMPLE-Like Equal-Order FEM Algorithm
,” Numer. Heat Transfer, Part B
1040-7790, 44
, pp. 61
–81
.18.
Padfield
, T.
, 1996, “Equations Describing the Physical Properties of Moist Air
,” http://www.natmus.dk/cons/tp/atmcalc/atmoclc1.htmhttp://www.natmus.dk/cons/tp/atmcalc/atmoclc1.htm19.
Tezduyar
, T. E.
, and Ganjoo
, D. K.
, 1986, “Petrov-Galerkin Formulations with Weighting Functions Dependent upon Spatial and Temporal Discretization: Applications to Transient Convections-Diffusion Problems
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 59
, pp. 49
–71
.20.
Jansen
, K. E.
, Collis
, S. S.
, Whiting
, C.
, and Shakib
, F.
, 1999, “A Better Consistency for Low-Order Stabilized Finite Element Methods
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 174
, pp. 153
–170
.21.
Volchkov
, E. P.
, Terekhov
, V. V.
, and Terekhov
, V. I.
, 2004, “A Numerical Study of Boundary-Layer Heat and Mass Transfer in Forced Flow of Humid Air with Surface Steam Condensation
,” Int. J. Heat Mass Transfer
0017-9310, 47
, pp. 1473
–1481
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.