This study investigates the heat transfer characteristics of aluminum-foam heat sinks with restricted flow outlets under impinging-jet flow conditions. An annular flow-restricting mask is used to control the height of the flow outlet of the aluminum foam sink, forcing the cooling air to reach the heat-generation surface. The enhanced heat transfer characteristics of aluminum-foam heat sinks using these flow-restricting masks are measured experimentally in this work. The effects of porosity, pore density and length of sample, air velocity, and flow outlet height on the heat transfer characteristics of aluminum-foam heat sinks are investigated. Results show that the effect of the flow outlet height is stronger than that of the pore density, porosity, or height of the aluminum heat sinks studied in this work. A general correlation between the Nusselt number and the Reynolds number based on the equivalent spherical diameter of the aluminum foam is obtained for 32 samples of aluminum-foam heat sinks with different sample heights (2040mm), pore densities (540ppi(poreinch)), porosities (0.87–0.96), and flow outlet heights (540mm). It should be noted that, based on the measured velocity profile, the increase of the Nusselt number of the aluminum-foam heat sink with the decrease in the flow outlet height is caused by the reduced convective resistance at the solid-gas interface through the increased velocity near the heat-generation surface. The reduction in flow outlet height increases the local thermal nonequilibrium condition near the heat-generation surface.

1.
Chao
,
C.-H.
, and
Li
,
J.-M.
, “
Foam-Metal Heat Sinks for Thermal Enhanced BGA Package Applications
,”
11th International Symposium on Transport Phenomena ISTP-II
, Hsinchu, Taiwan, Vol.
4
, pp.
23
29
.
2.
Chou
,
S.-F.
, and
Yang
,
C.-H.
, 1993, “
Heat Transfer Characteristics of Aluminum Foam Metal
,”
Proc. of Sixth International Symposium on Transport Phenomena in Thermal Engineering
, Seoul,
Begell House Inc.
,
Seoul
, pp.
709
714
.
3.
Lee
,
Y. C.
,
Zhang
,
W.
,
Xie
,
H.
, and
Mahajan
,
R. L.
, 1993, “
Cooling of a FCHIP Package With 100W, 1cm2 Chip
,”
Proc. of the 1993 ASME Int. Elec. Package Conf.
,
ASME
, New York, Vol.
1
,
419
423
.
4.
Calmidi
,
V. V.
, 1998. “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. thesis, Department of Mechanical Engineering, Graduate School of the University of Colorado.
5.
Ould-Amer
,
Y.
,
Chikh
,
S.
,
Bouhadef
,
K.
, and
Lauriat
,
G.
, 1998, “
Forced Convection Cooling Enhancement by Use of Porous Materials
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
251
258
.
6.
Tien
,
C. L.
, and
Kuo
,
S. M.
, 1998, “
Analysis of Forced Convection in Microstructures for Electronic System Cooling
,”
Cooling Technology for Electronic Equipment
,
Win
Aung
, ed.,
Hemisphere Co.
, pp.
285
294
.
7.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
, 2002, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
155
163
.
8.
Lee
,
K. B.
, and
Howell
,
J. R.
, 1991, “
Media Theoretical and Experimental Heat and Mass Transfer in Highly Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
34
(
8
) pp.
2123
2132
.
9.
Mohamad
,
A. A.
, 2003. “
Heat Transfer Enhancements in Heat Exchangers Fitted With Porous Media, Part I: Constant Wall Temperature
,”
Int. J. Therm. Sci.
1290-0729,
42
,
385
395
.
10.
Gobin
,
D.
,
Goyeau
,
B.
, and
Neculae
,
A.
, 2005, “
Convective Heat and Solute Transfer in Partially Porous Cavities
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1898
1908
.
11.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
12.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2003, “
Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
) pp.
262
267
.
13.
Xu
,
Y.
,
Luo
,
X.
, and
Chung
,
D. D. L.
, 2000, “
Sodium Silicate Based Thermal Interface Material for High Thermal Contact Conductance
,”
ASME J. Electron. Packag.
1043-7398,
122
, pp.
128
131
.
14.
Kabus
,
C. J.
, and
Wedekind
,
G. L.
, 2001, “
An Experimental Investigation Into Natural Convection Heat Transfer From Horizontal Isothermal Circular Disks
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3381
3384
.
15.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
, 2001, “
Forced Convection From Aluminum Foam Materials in An Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1451
1454
.
16.
Angirasa
,
D.
, 2002, “
Experimental Investigation of Forced Convection Heat Transfer Augmentation With Metallic Fibrous Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
919
922
.
17.
Ledezma
,
G.
, and
Bejan
,
A.
, 1996, “
Heat-Sinks With Sloped Plate Fins in Natural and Forced Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
9
), pp.
1773
1783
.
18.
Kim
,
S. Y.
,
Koo
,
J. M.
, and
Kuznetsov
,
A. V.
, 2001, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminum Foam Heat Sink
,”
Numer. Heat Transfer, Part A
1040-7782,
40
, pp.
21
36
.
19.
Zhou
,
D. W.
, and
Lee
,
S. J.
, 2004, “
Heat Transfer Enhancement of Impinging Jets Using Mesh Screens
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2097
2108
.
20.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
, 2005, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4685
4694
.
21.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
, 2004, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5149
5157
.
22.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
, 2006, “
Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
530
537
.
23.
Richardson
,
J. T.
,
Peng
,
Y.
, and
Remue
,
D.
, 2000, “
Properties of Ceramic Foam Catalyst Supports: Pressure Drop
,”
Appl. Catal., A
0926-860X,
204
, pp.
19
32
.
24.
Wu
,
W. T.
,
Liu
,
J. F.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
, 2006, “
Measurement and Correlation of Friction Characteristic of Flow Through Foam Matrixes
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
329
336
.
25.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
26.
Incropera
,
F. P.
, 1996,
Introduction to Heat Transfer
, 3rd ed.,
Wiley
, p.
462
.
27.
Freund
,
J. E.
, and
Simon
,
G. A.
, 1970,
Statistics—A First Course
, 6th ed.,
Prentice Hall
, Englewood Cliffs, p.
455
.
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing the Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
29.
Benediet
,
R. P.
, 1984,
Fundamentals of Temperature, Pressure and Flow Measurements
,
Wiley
, New York.
30.
Vafai
,
K.
, and
Sozen
,
M.
, 1990, “
Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
690
699
.
31.
Lee
,
J.
, and
Lee
,
S.-J.
, 1999, “
Stagnation Region Heat Transfer of A Turbulent Axisymmetric Jet Impinging
,”
Exp. Heat Transfer
0891-6152,
12
, pp.
137
156
.
32.
Jaing
,
P.-X.
,
Li
,
M.
,
Lu
,
Y.-J.
,
Yu
,
L.
, and
Ren
,
Z.-P.
, 2004, “
Experimental Research on Convection Heat Transfer in Sintered Porous Plate Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2085
2096
.
33.
Hwang
,
G. J.
, and
Chao
,
C. H
, 1994, “
Heat Transfer Measurement and Anlaysis for Sintered Porous Channels
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
456
464
.
You do not currently have access to this content.