A localized radial basis function (RBF) meshless method is developed for coupled viscous fluid flow and convective heat transfer problems. The method is based on new localized radial-basis function (RBF) expansions using Hardy Multiquadrics for the sought-after unknowns. An efficient set of formulae are derived to compute the RBF interpolation in terms of vector products thus providing a substantial computational savings over traditional meshless methods. Moreover, the approach developed in this paper is applicable to explicit or implicit time marching schemes as well as steady-state iterative methods. We apply the method to viscous fluid flow and conjugate heat transfer (CHT) modeling. The incompressible Navier–Stokes are time marched using a Helmholtz potential decomposition for the velocity field. When CHT is considered, the same RBF expansion is used to solve the heat conduction problem in the solid regions enforcing temperature and heat flux continuity of the solid/fluid interfaces. The computation is accelerated by distributing the load over several processors via a domain decomposition along with an interface interpolation tailored to pass information through each of the domain interfaces to ensure conservation of field variables and derivatives. Numerical results are presented for several cases including channel flow, flow in a channel with a square step obstruction, and a jet flow into a square cavity. Results are compared with commercial computational fluid dynamics code predictions. The proposed localized meshless method approach is shown to produce accurate results while requiring a much-reduced effort in problem preparation in comparison to other traditional numerical methods.

1.
Belytscho
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
, 1994, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
229
256
.
2.
Atluri
,
S. N.
, and
Shen
,
S.
, 2002,
The Meshless Method
,
Tech. Science Press
, Forsyth, GA.
3.
Atluri
,
S. N.
, and
Zhu
,
T.
, 1998, “
A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics
,”
Comput. Mech.
0178-7675,
22
, pp.
117
127
.
4.
Liu
,
G. R.
, 2003,
Mesh Free Methods
,
CRC Press
,
Boca Raton
, FL.
5.
Melenk
,
J. M.
, and
Babuska
,
I.
, 1996, “
The Partition of Unity Finite Element Method: Basic Theory and Application
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
289
316
.
6.
Kansa
,
E. J.
, 1990, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid Dynamics I—Surface Approximations and Partial Derivative Estimates
,”
Comput. Math. Appl.
0898-1221,
19
, pp.
127
145
.
7.
Kansa
,
E. J.
, 1990, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid Dynamics II—Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
0898-1221,
19
, pp.
147
161
.
8.
Kansa
,
E. J.
, and
Hon
,
Y. C.
, 2000, “
Circumventing the Ill—Conditioning Problem with Multiquadric Radial Basis Functions: Applications to Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
0898-1221,
39
, pp.
123
137
.
9.
Franke
,
R.
, 1982, “
Scattered Data Interpolation: Test of Some Methods
,”
Math. Comput.
0025-5718,
38
, pp.
181
200
.
10.
Mai-Duy
,
N.
, and
Tran-Cong
,
T.
, 2002, “
Mesh-Free Radial Basis Function Network Methods With Domain Decomposition for Approximation of Functions and Numerical Solution of Poisson’s Equation
,”
Eng. Anal. Boundary Elem.
0955-7997,
26
, pp.
133
156
.
11.
Cheng
,
A. H.-D.
,
Golberg
,
M. A.
,
Kansa
,
E. J.
, and
Zammito
,
G.
, 2003, “
Exponential Convergence and H-c Multiquadric Collocation Method for Partial Differential Equations
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
19
, pp.
571
594
.
12.
Gottlieb
,
D.
, and
Orzag
,
S. A.
, 1977,
Numerical Analysis of Spectral Methods: Theory and Applications
,
Society for Industrial and Applied Mathematics
,
Bristol, UK
.
13.
Maday
,
Y.
, and
Quateroni
,
A.
, 1982, “
Spectral and Pseudo-Spectral Approximations of the Navier-Stokes Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
19
, pp.
761
780
.
14.
Patera
,
A.
, 1984, “
A Spectral Element Method of Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
0021-9991,
54
, pp.
468
488
.
15.
Macaraeg
,
M.
, and
Street
,
C. L.
, 1986, “
Improvement in Spectral Collocation Discretization Through a Multiple Domain Technique
,”
Appl. Numer. Math.
0168-9274,
1989
, pp.
95
108
.
16.
Hwar
,
C. K.
,
Hirsch
,
R.
,
Taylor
,
T.
, and
Rosenberg
,
A. P.
, 1989, “
A Pseudo-Spectral Matrix Element Method for Solution of Three Dimensional Incompressible Flows and its Parallel Implementation
,”
J. Comput. Phys.
0021-9991,
83
, pp.
260
291
.
17.
Fasshauer
,
G.
, 2005, “
RBF Collocation Methods as Pseudo-Spectral Methods
,”
Boundary Elements XVII
,
A.
Kassab
,
C. A.
Brebbia
, and
E.
Divo
, eds.,
WIT Press
, Southampton, UK, pp.
47
57
.
18.
Powell
,
M. J. D.
, 1992, “
The Theory of Radial Basis Function Approximation
,”
Advances in Numerical Analysis
,
W.
Light
, ed.,
Oxford Science Publications
,
Oxford
, Vol.
II
, pp.
143
167
.
19.
Buhmann
,
M. D.
, 2003,
Radial Basis Functions: Theory and Implementation
,
Cambridge University Press
,
Cambridge, MA
.
20.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
, 1986, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
639
659
.
21.
Brebbia
,
C. A.
,
Partridge
,
P.
, and
Wrobel
,
L. C.
, 1992,
The Dual Reciprocity Boundary Element Method
,
Computational Mechanics and Elsevier Applied Science
,
Southampton, UK
.
22.
Golberg
,
M.
,
Chen
,
C. S.
, and
Bowman
,
H.
, 1999, “
Some Recent Results and Proposals for the Use of Radial Basis Functions in the BEM
,”
Eng. Anal. Boundary Elem.
0955-7997,
23
, pp.
285
296
.
23.
Rahaim
,
C. P.
, and
Kassab
,
A. J.
, 1996, “
Pressure Correction DRBEM Solution for Heat Transfer and Fluid Flow in Incompressible Viscous Fluids
,”
Eng. Anal. Boundary Elem.
0955-7997,
18
, pp.
265
272
.
24.
Sarler
,
B.
,
Tran-Cong
,
T.
, and
Chen
,
C. S.
, 2005, “
Meshfree Direct and Indirect Local Radial Basis Function Collocation Formulations for Transport Phenomena
,”
Boundary Elements XVII
,
A.
Kassab
,
C. A.
Brebbia
, and
E.
Divo
, eds.,
WIT Press
, Southampton, UK, pp.
417
428
.
25.
Sarler
,
B.
, and
Vertnik
,
R.
, 2005, “
Local Explicit Radial Basis Function Collocation Method for Diffusion Problems
,”
Comput. Math. Appl.
0898-1221,
51
(
8
), pp.
1269
1282
.
26.
Hardy
,
R. L.
, 1971,
Multiquadric Equations of Topography and Other Irregular Surfaces
,
J. Geophys. Res.
0148-0227,
176
, pp.
1905
1915
.
27.
Kassab
,
A.
,
Divo
,
E.
,
Heidmann
,
J.
,
Steinthorsson
,
E.
, and
Rodriguez
,
F.
, 2003, “
BEM/FVM Conjugate Heat Transfer Analysis of a Three-Dimensional Film Cooled Turbine Blade
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
13
, pp.
581
610
.
28.
Kassab
,
A. J.
, and
Aliabadi
,
M. H.
, eds., 2001,
Advances in Boundary Elements: Coupled Field Problems
,
WIT Press
,
Southampton, UK
.
29.
Rahaim
,
C. P.
,
Kassab
,
A. J.
, and
Cavalleri
,
R.
, 2000, “
A Coupled Dual Reciprocity Boundary Element/Finite Volume Method for Transient Conjugate Heat Transfer
,” AIAA
J. Thermophys. Heat Transfer
0887-8722,
14
, pp.
27
38
.
30.
He
,
M.
,
Bishop
,
P.
,
Kassab
,
A. J.
, and
Minardi
,
A.
, 1995, “
A Coupled FDM/BEM solution for the Conjugate Heat Transfer Problem
,”
Numer. Heat Transfer, Part B
1040-7790,
28
, pp.
139
154
.
31.
Li
,
H.
, and
Kassab
,
A. J.
, 1981, “
A Coupled FVM/BEM Solution to Conjugate Heat Transfer in Turbine Blades
,” AIAA Paper No. 94–1981.
32.
Divo
,
E. A.
,
Kassab
,
A. J.
, and
Rodriguez
,
F.
, 2003, “
Parallel Domain Decomposition Approach for Large-Scale 3D Boundary Element Models in Linear and Non-Linear Heat Conduction
,”
Numer. Heat Transfer, Part B
1040-7790,
44
, pp.
417
437
.
33.
Divo
,
E.
,
Kassab
,
A. J.
,
Mitteff
,
E.
, and
Quintana
,
L.
, 2004, “
A Parallel Domain Decomposition Technique for Meshless Methods Applications to Large-Scale Heat Transfer Problems
,” ASME Paper No. HT-FED2004-56004.
34.
Divo
,
E.
, and
Kassab
,
A. J.
, 2005, “
Effective Domain Decomposition Meshless Formulation of Fully-Viscous Incompressible Fluid Flows
,”
Boundary Elements XVII
,
A.
Kassab
,
C. A.
Brebbia
, and
E.
Divo
, eds.,
WIT Press
, Southampton, UK, pp.
67
77
.
35.
Divo
,
E.
, and
Kassab
,
A. J.
, 2005, “
A Meshless Method for Conjugate Heat Transfer
,”
Proceedings of ECCOMAS Coupled Problems 2005
,
M.
Papadrakakis
,
E.
Oñate
, and
B.
Schrefler
, eds., Santorini, Greece, April.
36.
Divo
,
E.
, and
Kassab
,
A. J.
, 2005, “
A Meshless Method for Conjugate Heat Transfer Problems
,”
Eng. Anal.
,
29
, pp.
136
149
.
37.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965,
Numerical Calculation of Time Dependent Viscous Incompressible Flow of Fluids With a Free Surface
,
Phys. Fluids
0031-9171,
8
, pp.
2182
2189
.
38.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Press
, Washington, DC.
39.
Orlanski
,
I.
, 1976, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
0021-9991,
21
, pp.
251
269
.
40.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High-RE Solutions for Incompressible-Flow Using the Navier Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
0021-9991,
48
(
3
), pp.
387
411
.
41.
Mitteff
,
E.
,
Divo
,
E.
, and
Kassab
,
A. J.
, 2006, “
Automated Point Distribution and Parallel Segmentation for Meshless Methods
,”
Proceedings of CIMENICS 2006, 8th International Congress of Numerical Methods in Engineering and Applied Sciences
,
B.
Gamez
,
D.
Ojeda
,
G.
Larrazabal
, and
M.
Cerrolaza
, eds.,
Sociedad Venezuelana de Methodos Numericos En Engineria
,
Valencia, Venezuela
, Margarita Island, Venezuela, March 20–24, pp.
93
100
.
You do not currently have access to this content.