Direct numerical simulation methodology clarified the three-dimensional separated flow and heat transfer around three backward-facing steps in a rectangular channel, especially effects of channel expansion ratio ER upon them. ER treated in the present study was 1.5, 2.0, and 3.0 under a step aspect ratio of 36.0. The Reynolds number Re based on the mean velocity at inlet and the step height was varied from 300 to 1000. The present numerical results for ER=2.0 were found to be in very good agreement with the previous experimental and numerical ones in the present Reynolds number range for both the steady and unsteady flow states. The time averaged reattachment length on the center line increases with a decrease of ER. The flow became unsteady at RE=700, 600, and 500 for ER=1.5, 2.0, and 3.0, respectively, accompanying the remarkable increase of the three-dimensionality of the flow and temperature fields in spite of a very large step aspect ratio of 36.0. The Nusselt number increases in the reattachment flow region, in the neighborhood of the sidewalls, and also in the far downstream depending on both Re and ER.

1.
Fletcher
,
L. S.
,
Briggs
,
D. G.
, and
Page
,
R. H.
, 1974, “
Heat Transfer in Separated and Reattached Flows: An Annotated Review
,”
Isr. J. Technol.
0021-2202,
12
, pp.
236
261
.
2.
Aung
,
W.
, 1983, “
Separated Forced Convection
,”
Proc. ASME-JSME Thermal Eng. Conf.
, Honolulu, HI, March 20–24, Vol.
2
, pp.
499
515
.
3.
Ota
,
T.
, and
Nishiyama
,
H.
, 1987, “
A Correlation of Maximum Turbulent Heat Transfer Coefficient in Reattachment Flow Region
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1193
1200
.
4.
Merzkirch
,
W.
,
Page
,
R. H.
, and
Fletcher
,
L. S.
, 1988, “
A Survey of Heat Transfer in Compressible Separated and Reattached Flows
,”
AIAA J.
0001-1452,
26
, pp.
144
150
.
5.
Ota
,
T.
, 2000, “
A Survey of Heat Transfer in Separated and Reattached Flows
,”
Appl. Mech. Rev.
0003-6900,
53
, pp.
219
235
.
6.
Kaiktsis
,
L.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
, 1996, “
Unsteadiness and Convective Instabilities in a Two-Dimensional Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
321
, pp.
157
187
.
7.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, 1997, “
Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
330
, pp.
349
474
.
8.
Williams
,
P. T.
, and
Baker
,
A. J.
, 1997, “
Numerical Simulations of Laminar Flow Over a 3D Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
0271-2091,
24
, pp.
1159
1183
.
9.
Lee
,
T.
, and
Mateescu
,
D.
, 1998, “
Experimental and Numerical Investigation of 2D Backward-Facing Step Flow
,”
J. Fluids Struct.
0889-9746,
12
, pp.
703
716
.
10.
Chiang
,
T. P.
, and
Sheu
,
T. W. H.
, 1999, “
A Numerical Revisit of Backward-Facing Step Flow Problem
,”
Phys. Fluids
1070-6631,
11
, pp.
862
874
.
11.
Iwai
,
H.
,
Nakabe
,
K.
, and
Suzuki
,
K.
, 2000, “
Flow and Heat Transfer Characteristics of Backward-Facing Step Laminar Flow in a Rectangular Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
457
471
.
12.
Kaltenbach
,
H.-J.
, and
Janke
,
G.
, 2000, “
Direct Numerical Simulation of Flow Separation Behind a Swept Rearward-Facing Step at Re=3000
,”
Phys. Fluids
1070-6631,
12
, pp.
2320
2337
.
13.
Barkley
,
D.
,
Gomes
,
M. G. M.
, and
Henderson
,
R. D.
, 2002, “
Three-Dimensional Instability in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
473
, pp.
167
190
.
14.
Nie
,
J. H.
, and
Armaly
,
B. F.
, 2002, “
Three-Dimensional Convective Flow Adjacent to Backward-Facing Step—Effects of Step Height
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2431
2438
.
15.
Ota
,
T.
,
Fu
,
H.-G.
, and
Yoshikawa
,
H.
, 2002, “
Effects of Aspect Ratio on Turbulent Heat Transfer Around a Downward Facing Step
,”
Proc. 12th Int. Heat Transfer Conf.
, Grenoble, France, August 18–23, pp.
723
728
.
16.
Tylli
,
N.
,
Kaiktsis
,
L.
, and
Ineichen
,
B.
, 2002, “
Sidewall Effects in Flow Over a Backward-Facing Step: Experiments and Numerical Simulations
,”
Phys. Fluids
1070-6631,
14
, pp.
3835
3845
.
17.
Armaly
,
B. F.
,
Li
,
A.
, and
Nie
,
J. H.
, 2003, “
Measurements in Three-Dimensional Laminar Separated Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3573
3582
.
18.
Sugawara
,
K.
,
Kaihara
,
E.
,
Yoshikawa
,
H.
, and
Ota
,
T.
, 2003, “
Numerical Simulation of Unsteady Separated Flow and Heat Transfer Around an Inclined Downward Step
,”
Proc. 6th ASME-JSME Thermal Eng. Jt. Conf.
, Honolulu, HI, March 16–20, Paper No. TED-AJ03-188.
19.
Biswas
,
G.
,
Breuer
,
M.
, and
Durst
,
F.
, 2004, “
Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
362
374
.
20.
Nie
,
J. H.
, and
Armaly
,
B. F.
, 2004, “
Reverse Flow Regions in Three-Dimensional Backward-Facing Step Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4713
4720
.
21.
Nie
,
J. H.
, and
Armaly
,
B. F.
, 2004, “
Convection in Laminar Three-Dimensional Separated Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5407
5416
.
22.
Durst
,
F.
, and
Tropea
,
C.
, 1981, “
Turbulent, Backward-Facing Step Flows in Two-Dimensional Ducts and Channels
,”
Proc. 3rd Int. Symp. On Turbulent Shear Flows
, Davis, CA, September 9–11, pp.
18.1
18.6
.
23.
Ötügen
,
M. V.
, 1991, “
Expansion Ratio Effects on the Separated Shear Layer and Reattachment Downstream of a Backward Facing Step
,”
Exp. Fluids
0723-4864,
10
, pp.
273
280
.
24.
Kuehn
,
D. M.
, 1980, “
Effects of Adverse Pressure Gradient on the Incompressible Reattaching Flow Over a Rearward-Facing Step
,”
AIAA J.
0001-1452,
18
, pp.
343
344
.
25.
Ra
,
S. H.
, and
Chang
,
P. K.
, 1990, “
Effects of Pressure Gradient on Reattaching Flow Downstream of a Rearward-Facing step
,”
J. Aircr.
0021-8669,
27
, pp.
93
95
.
26.
Sugawara
,
K.
,
Kaihara
,
E.
,
Yoshikawa
,
H.
, and
Ota
,
T.
, 2005, “
DNS of Three-Dimensional Unsteady Separated Flow and Heat Transfer Around a Downward Step
,” ASME Paper No. HT2005-72178.
27.
Kito
,
A.
,
Sugawara
,
K.
,
Yoshikawa
,
H.
, and
Ota
,
T.
, 2005, “
DNS of Expansion Ratio Effects on Three-Dimensional Unsteady Separated Flow and Heat Transfer Around a Downward Step
,” ASME Paper No. HT2005-72180.
28.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schönung
,
B.
, 1983, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
0022-1120,
127
, pp.
473
496
.
29.
Amsden
,
A. A.
, and
Harlow
,
F. H.
, 1970, “
A Simplified MAC Technique for Incompressible Fluid Flow Calculations
,”
J. Comput. Phys.
0021-9991,
6
, pp.
322
325
.
30.
Achenbach
,
E.
, 1990, “
Mass Transfer Downstream a Backward or a Forward-Facing Step
,”
Proc. 9th Int. Heat Transfer Conf.
, Vol.
5
, pp.
305
310
.
31.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
59
, pp.
308
323
.
32.
Vradis
,
G. C.
, and
VanNostrand
,
L.
, 1992, “
Laminar Coupled Flow Downstream of an Asymmetric Sudden Expansion
,”
J. Thermophys. Heat Transfer
0887-8722,
6
, pp.
288
295
.
33.
Ichinose
,
K.
,
Tokunaga
,
H.
, and
Satofuka
,
N.
, 1991, “
Numerical Simulation of Two-Dimensional Backward-Facing Step Flows
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
57B
, pp.
3715
3721
.
34.
Valencia
,
A.
, and
Hinojosa
,
L.
, 1997, “
Numerical Solutions of Pulsating Flow and Heat Transfer Characteristics in a Channel with a Backward-Facing Step
,”
Heat Mass Transfer
0947-7411,
32
, pp.
143
148
.
35.
Sparrow
,
E. M.
, and
Chuck
,
W.
, 1987, “
PC Solutions for Heat Transfer and Fluid Flow Downstream of an Abrupt, Asymmetric Enlargement in a Channel
,”
Numer. Heat Transfer
0149-5720,
12
, pp.
19
40
.
36.
Sparrow
,
E. M.
,
Kang
,
S. S.
, and
Chuck
,
W.
, 1987, “
Relation Between the Points of Flow Reattachment and Maximum Heat Transfer for Regions of Flow Separation
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1237
1246
.
You do not currently have access to this content.