Heterogeneous bubble nucleation was studied on surfaces having nanometer scale asperities and indentations as well as different surface-fluid interaction energies. Nonequilibrium molecular dynamics simulations at constant normal stress and either temperature or heat flux were carried out for the Lennard–Jones fluid in contact with a Lennard–Jones solid. When surface defects were of the same size or smaller than the estimated critical nucleus (the smallest nucleus whose growth is energetically favored) size of 10002000Å3, there was no difference between the defected surfaces and atomically smooth surfaces. On the other hand, surfaces with significantly larger indentations had nucleation rates that were about two orders of magnitude higher than the systems with small defects. Moreover, nucleation was localized in the large indentations. This localization was greatest under constant heat flux conditions and when the solid-fluid interactions were weak. The results suggest strategies for enhancing heterogeneous bubble nucleation rates as well as for controlling the location of nucleation events.

1.
Dhir
,
V. K.
, 1998, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
365
401
.
2.
Webb
,
R. L.
, 2004, “
Odyssey of the Enhanced Boiling Surface
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
1051
1059
.
3.
Dhir
,
V. K.
, 2006, “
Mechanistic Prediction of Nucleate Boiling Heat Transfer: Achievable or a Hopeless Task?
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1
12
.
4.
Argyropoulos
,
P.
,
Scott
,
K.
, and
Taama
,
W. M.
, 1999, “
Carbon Dioxide Evolution Patterns in Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
44
, pp.
3575
3584
.
5.
Argyropoulos
,
P.
,
Scott
,
K.
, and
Taama
,
W. M.
, 1999, “
Gas Evolution and Power Performance in Direct Methanol Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
661
669
.
6.
Scott
,
K.
,
Argyropoulos
,
P.
,
Yiannopoulos
,
P.
, and
Taama
,
W. M.
, 2001, “
Electrochemical and Gas Evolution Characteristics of Direct Methanol Fuel Cells With Stainless Steel Mesh Flow Beds
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
823
832
.
7.
Asai
,
A.
, 1989, “
Application of Nucleation Theory to the Design of Bubble Jet Printers
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
28
(
5
), pp.
909
915
.
8.
Hong
,
Y.
,
Ashgriz
,
N.
, and
Andrews
,
J.
, 2004, “
Experimental Study of Bubble Dynamics on a Micro Heater Induced by Pulse Heating
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
259
271
.
9.
Avedisian
,
C. T.
,
Osborne
,
W. S.
,
McLeod
,
F. D.
, and
Curley
,
C. M.
, 1999, “
Measuring Bubble Bucleation Temperature on the Surface of a Rapidly Heated Thermal Ink-Jet Heater Immersed in a Pool of Water
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
3875
3899
.
10.
Hong
,
Y.
,
Ashgriz
,
N.
,
Andrews
,
J.
, and
Parizi
,
H.
, 2004, “
Numerical Simulation of Growth and Collapse of a Bubble Induced by a Pulsed Microheater
,”
J. Microelectromech. Syst.
1057-7157,
13
(
5
), pp.
857
869
.
11.
Glod
,
S.
,
Poulikakos
,
D.
,
Zhao
,
Z.
, and
Yadigaroglu
,
G.
, 2002, “
An Investigation of Microscale Explosive Vaporization of Water on an Ultrathin Pt Wire
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
367
379
.
12.
Bankoff
,
S. G.
, 1958, “
Entrapment of Gas in the Spreading of a Liquid Over a Rough Surface
,”
AIChE J.
0001-1541,
4
(
1
), pp.
24
26
.
13.
Corry
,
C.
, and
Foust
,
A.
, 1955, “
Surface Variables in Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
51
(
17
), pp.
1
12
.
14.
Griffith
,
P.
, and
Wallis
,
J. D.
, 1960, “
The Role of Surface Conditions in Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
56
, pp.
49
62
.
15.
Cornwell
,
K.
, 1977, “
Naturally Formed Boiling Site Cavities
,”
Lett. Heat Mass Transfer
0094-4548,
4
, pp.
63
72
.
16.
Theofanous
,
T. G.
,
Tu
,
J. P.
,
Dinh
,
A. T.
, and
Dinh
,
T. N.
, 2002, “
The Boiling Crisis Phenomenon Part I: Nucleation and Nucleate Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
775
792
.
17.
Kocamustafaogullari
,
G.
, and
Ishii
,
M.
, 1983, “
Interfacial Area and Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
26
(
9
), pp.
1377
1387
.
18.
Gaertner
,
R. F.
, and
Westwater
,
J. W.
, 1960, “
Population of Active Sites in Nucleate Boiling Heat Transfer
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
56
(
30
), pp.
39
48
.
19.
Borkent
,
B. M.
,
Dammer
,
S. M.
,
Schönherr
,
H.
,
Vancso
,
G. J.
, and
Lohse
,
D.
, 2007, “
Superstability of Surface Nanobubbles
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
204502
.
20.
Yin
,
Z.
,
Prosperetti
,
A.
, and
Kim
,
J.
, 2004, “
Bubble Growth on an Impulsively Powered Microheater
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1053
1067
.
21.
Okuyama
,
K.
,
Takehara
,
R.
,
Iida
,
Y.
, and
Kim
,
J.-H.
, 2006, “
Pumping Action by Boiling Propagation in a Microchannel
,”
Microscale Thermophys. Eng.
1089-3954,
9
, pp.
119
135
.
22.
Thomas
,
O. C.
,
Cavicchi
,
R. E.
, and
Tarlov
,
M. J.
, 2003, “
Effect of Surface Wettability on Fast Transient Microboiling Behavior
,”
Langmuir
0743-7463,
19
, pp.
6168
6177
.
23.
Avedisian
,
C. T.
,
Cavicchi
,
R. E.
, and
Tarlov
,
M. J.
, 2006, “
New Technique for Visualizing Microboiling Phenomena and Its Application to Water Pulse Heated by a Thin Metal Film
,”
Rev. Sci. Instrum.
0034-6748,
77
, p.
063706
.
24.
Balss
,
K. M.
,
Avedisian
,
C. T.
,
Cavicchi
,
R. E.
, and
Tarlov
,
M. J.
, 2005, “
Nanosecond Imaging of Microboiling Behavior on Pulsed-Heated Au Films Modified With Hydrophilic and Hydrophobic Self-Assembled Monolayers
,”
Langmuir
0743-7463,
21
, pp.
10459
10467
.
25.
Zhao
,
Z.
,
Glod
,
S.
, and
Poulikakos
,
D.
, 2000, “
Pressure and Power Generation During Explosive Vaporization on a Thin-Film Microheater
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
281
296
.
26.
Chen
,
T.
,
Klausner
,
J. F.
,
Garimella
,
S. V.
, and
Chung
,
J. N.
, 2006, “
Subcooled Boiling Incipience on a Highly Smooth Microheater
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4399
4406
.
27.
Lang
,
F.
, and
Leiderer
,
P.
, 2006, “
Liquid Vapour Phase Transitions at Interfaces: Sub-Nanosecond Investigations by Monitoring the Ejection of Thin Liquid Films
,”
New J. Phys.
1367-2630,
8
, p.
14
.
28.
Yavas
,
O.
,
Leiderer
,
P.
,
Park
,
H. K.
,
Grigoropoulos
,
C. P.
,
Poon
,
C. C.
,
Leung
,
W. P.
,
Do
,
N.
, and
Tam
,
A. C.
, 1993, “
Optical Reflectance and Scattering Studies of Nucleation and Growth of Bubbles at a Liquid-Solid Interface Induced by Pulsed Laser Heating
,”
Phys. Rev. Lett.
0031-9007,
70
(
12
), pp.
1830
1833
.
29.
Gu
,
X.
, and
Urbassek
,
H. M.
, 2005, “
Atomic Dynamics of Explosive Boiling of Liquid-Argon Films
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
81
, pp.
675
679
.
30.
Dou
,
Y.
,
Zhigilei
,
L. V.
,
Winograd
,
N.
, and
Garrison
,
B. J.
, 2001, “
Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description
,”
J. Phys. Chem. A
1089-5639,
105
, pp.
2748
2755
.
31.
Maruyama
,
S.
, and
Kimura
,
T.
, 2000, “
A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface
,”
Heat Technol.
0392-8764,
18
(Suppl. 1) pp.
69
74
.
32.
Novak
,
B. R.
,
Maginn
,
E. J.
, and
McCready
,
M. J.
, 2007, “
Comparison of Heterogeneous and Homogeneous Bubble Nucleation Using Molecular Simulations
,”
Phys. Rev. B
0163-1829,
75
(
8
), p.
085413
.
33.
Yi
,
P.
,
Poulikakos
,
D.
,
Walther
,
J.
, and
Yadigaroglu
,
G.
, 2002, “
Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2087
2100
.
34.
Neimark
,
A. V.
, and
Vishnyakov
,
A.
, 2005, “
The Birth of a Bubble: A Molecular Simulation Study
,”
J. Chem. Phys.
0021-9606,
122
, p.
054707
.
35.
Wilt
,
P. M.
, 1986, “
Nucleation Rates and Bubble Stability in Water-Carbon Dioxide Solutions
,”
J. Colloid Interface Sci.
0021-9797,
112
(
2
), pp.
530
538
.
36.
Sato
,
T.
, and
Matsumura
,
H.
, 1964, “
On the Conditions of Incipient Subcooled Boiling With Forced Convection
,”
Bull. JSME
0021-3764,
7
(
26
), pp.
392
398
.
37.
Hsu
,
Y. Y.
, 1962, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
0022-1481,
84
, pp.
207
216
.
38.
Davis
,
E. J.
, and
Anderson
,
G. H.
, 1966, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
0001-1541,
12
(
4
), pp.
774
780
.
39.
Kandlikar
,
S. G.
, 2006, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
441
447
.
40.
Wu
,
Y. W.
, and
Pan
,
C.
, 2003, “
A Molecular Dynamics Simulation of Bubble Nucleation in Homogeneous Liquid Under Heating With Constant Mean Negative Pressure
,”
Microscale Thermophys. Eng.
1089-3954,
7
, pp.
137
151
.
41.
Toxvaerd
,
S.
, 2002, “
Molecular Dynamics Simulation of Heterogeneous Nucleation at a Structureless Solid Surface
,”
J. Chem. Phys.
0021-9606,
117
(
22
), pp.
10303
10310
.
42.
Hill
,
T. L.
, 1952, “
Theory of Physical Adsorption
,”
Adv. Catal.
0065-2342,
4
, pp.
211
258
.
43.
Martyna
,
G. J.
,
Tuckerman
,
M. E.
,
Tobias
,
D. J.
, and
Klein
,
M. L.
, 1996, “
Explicit Reversible Integrators for Extended Systems Dynamics
,”
Mol. Phys.
0026-8976,
87
(
5
), pp.
1117
1157
.
44.
Bartell
,
L. S.
, 2002, “
Analyses of Nucleation Rates From Molecular Dynamics Simulations
,”
J. Phys. Chem. A
1089-5639,
106
(
45
), pp.
10893
10897
.
45.
Jacob
,
E. J.
, and
Bartell
,
L. S.
, 2003, “
Analyses of Nucleation Rates From Molecular Dynamics Simulations. II. Weight Functions, Generation of Stochastic Times, and Realistic Uncertainties
,”
J. Phys. Chem. A
1089-5639,
107
(
11
), pp.
1859
1866
.
46.
Wu
,
D. T.
, 1997, “
Nucleation Theory
,”
Solid State Phys.
0081-1947,
50
, pp.
37
187
.
47.
Kashchiev
,
D.
, 1969, “
Solution of the Non-Steady State Problem in Nucleation Kinetics
,”
Surf. Sci.
0039-6028,
14
, pp.
209
220
.
48.
Kashchiev
,
D.
, 2005, “
Moments of the Rate of Nonstationary Nucleation
,”
J. Chem. Phys.
0021-9606,
122
, p.
114506
.
49.
Ikeshoji
,
T.
, and
Hafskjold
,
B.
, 1994, “
Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and Through Liquid-Gas Interface
,”
Mol. Phys.
0026-8976,
81
(
2
), pp.
251
261
.
50.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford Science
,
Oxford
.
51.
Sevick
,
E. M.
,
Monson
,
P. A.
, and
Ottino
,
J. M.
, 1988, “
Monte Carlo Calculations of Cluster Statistics in Continuum Models of Composite Morphology
,”
J. Chem. Phys.
0021-9606,
88
(
2
), pp.
1198
1206
.
52.
Maruyama
,
S.
,
Kurashige
,
T.
,
Matsumoto
,
S.
,
Yamaguchi
,
Y.
, and
Kimura
,
T.
, 1998, “
Liquid Droplet in Contact With a Wolid Surface
,”
Microscale Thermophys. Eng.
1089-3954,
2
, pp.
49
62
.
53.
Peng
,
X. F.
,
Tian
,
Y.
, and
Lee
,
D. J.
, 2002, “
Arguments on Microscale Boiling Dynamics
,”
Microscale Thermophys. Eng.
1089-3954,
6
, pp.
75
83
.
54.
Peng
,
X. F.
,
Tien
,
Y.
, and
Lee
,
D. J.
, 2001, “
Bubble Bucleation in Microchannels: Statistical Mechanics Approach
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2957
2964
.
55.
Carey
,
V. P.
, and
Wemhoff
,
A. P.
, 2005, “
Thermodynamic Analysis of Near-Wall Effects on Phase Stability and Homogeneous Nucleation During Rapid Surface Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5431
5445
.
56.
Daubert
,
T.
, and
Danner
,
R.
, 1983,
Physical and Thermodynamic Properties of Pure Chemicals: Data Complilation
,
Hemisphere
,
UK
.
57.
1995,
CRC Handbook of Chemistry and Physics
, 76th ed.,
D. R.
Lide
, ed.,
CRC
,
Boca Raton, FL
.
58.
Younglove
,
B. A.
, and
Hanley
,
H. J. M.
, 1986, “
The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon
,”
J. Phys. Chem. Ref. Data
0047-2689,
15
(
4
), pp.
1323
1337
.
59.
Johnson
,
J. K.
,
Zellweg
,
J. A.
, and
Gubbins
,
K. E.
, 1993, “
The Lennard-Jones Equation of State Revisited
,”
Mol. Phys.
0026-8976,
78
(
3
), pp.
591
618
.
60.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
, 1996, “
VMD—Visual Molecular Dynamics
,”
J. Mol. Graphics
0263-7855,
14
(
1
), pp.
33
38
.
You do not currently have access to this content.