The turbulent convective heat transfer behavior of alumina (Al2O3) and zirconia (ZrO2) nanoparticle dispersions in water is investigated experimentally in a flow loop with a horizontal tube test section at various flow rates (9000<Re<63,000), temperatures (2176°C), heat fluxes (up to 190kWm2), and particle concentrations (0.93.6vol% and 0.20.9vol% for Al2O3 and ZrO2, respectively). The experimental data are compared to predictions made using the traditional single-phase convective heat transfer and viscous pressure loss correlations for fully developed turbulent flow, Dittus–Boelter, and Blasius/MacAdams, respectively. It is shown that if the measured temperature- and loading-dependent thermal conductivities and viscosities of the nanofluids are used in calculating the Reynolds, Prandtl, and Nusselt numbers, the existing correlations accurately reproduce the convective heat transfer and viscous pressure loss behavior in tubes. Therefore, no abnormal heat transfer enhancement was observed in this study.

1.
Maxwell
,
J. C.
, 1954,
Treatise on Electricity and Magnetism
,
Dover
,
New York
.
2.
Maxwell-Garnett
,
J. C.
, 1904, “
Colours in Metal Glasses and in Metallic Films
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
203
, pp.
385
420
.
3.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
0913-946X,
4
(
4
), pp.
227
235
.
4.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
American Society of Mechanical Engineers
,
New York
.
5.
Eastman
,
J.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene-Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
6.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
7.
Assael
,
M. J.
,
Chen
,
C.-F.
,
Metaxa
,
I.
, and
Wakeham
,
W. A.
, 2004, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
0195-928X,
25
, pp.
971
985
.
8.
Ahuja
,
A. S.
, 1975, “
Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspensions
,”
J. Appl. Phys.
0021-8979,
46
, pp.
3408
3416
.
9.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
24
), pp.
5181
5188
.
10.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids)
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
4
), pp.
481
485
.
11.
Wen
,
D.
, and
Ding
,
Y.
, 2005 “
Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels
,”
Microfluid. Nanofluid.
1613-4982,
1
(
2
), pp.
183
189
.
12.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
0891-6152,
11
(
2
), pp.
151
170
.
13.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
1
), pp.
151
155
.
14.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
19
), pp.
3701
3707
.
15.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
16.
Williams
,
W. C.
, 2007, “
Experimental and Theoretical Investigation of Transport Phenomena in Nanoparticle Colloids (Nanofluids)
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
17.
Rusconi
,
R.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Piazza
,
R.
, and
Hu
,
L. W.
, 2007, “
Numerical Analysis of Convective Instabilities in a Transient Short-Hot-Wire Setup for Measurement of Liquid Thermal Conductivity
,”
Int. J. Thermophys.
0195-928X,
28
(
4
), pp.
1131
1146
.
18.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
567
574
.
19.
Williams
,
W. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
The Efficacy of Nanofluids as Convective Heat Transfer Enhancing Coolants for Nuclear Reactor Applications
,”
Proceedings of the 2007 ANS Meeting
,
Boston
, Jun. 24–28.
20.
You
,
S. M.
,
Kim
,
J.
, and
Kim
,
K. H.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
(
16
), pp.
3374
3376
.
21.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change during Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4105
4116
.
You do not currently have access to this content.