A new multiscale model of thermal contact resistance (TCR) between real rough surfaces is presented, which builds on Archard’s multiscale description of surface roughness. The objective of this work is to construct the new model and use it to evaluate the effects of scale dependent surface features and properties on TCR. The model includes many details affecting TCR and is also fairly easy to implement. Multiscale fractal based models often oversimplify the contact mechanics by assuming that the surfaces are self-affine, the contact area is simply a geometrical truncation of the surfaces, and the pressure is a constant value independent of geometry and material properties. Concern has grown over the effectiveness of frequently used statistical rough surface contact models due to the inadequacies in capturing the true multiscale nature of surfaces (i.e., surfaces have multiple scales of surface features). The model developed in this paper incorporates several variables, including scale dependent yield strength and scale dependent spreading resistance to develop a new model that can be used to evaluate TCR. The results suggest that scale dependent mechanical properties are more influential than scale dependent thermal properties. When compared to an existing TCR model, this very inclusive model shows the same qualitative trend. Results also show the significance of capturing multiscale roughness when addressing the thermal contact resistance problem.

1.
Lambert
,
M. A.
, and
Fletcher
,
L. S.
, 1997, “
Review of Models for Thermal Contact Conductance of Metals
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
2
), pp.
129
140
.
2.
Madhusudana
,
C. V.
, and
Fletcher
,
L. S.
, 1986, “
Contact Heat Transfer—The Last Decade
,”
AIAA J.
0001-1452,
24
(
3
), pp.
510
523
.
3.
Madhusudana
,
C. V.
,
Fletcher
,
L. S.
, and
Peterson
,
G. P.
, 1990, “
Thermal Conductance of Cylindrical Joints. A Critical Review
,”
J. Thermophys. Heat Transfer
0887-8722,
4
(
2
), pp.
204
211
.
4.
Yovanovich
,
M. M.
, 2005, “
Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
182
206
.
5.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
A295
, pp.
300
319
.
6.
Kogut
,
L.
, and
Jackson
,
R. L.
, 2005, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
ASME J. Tribol.
0742-4787,
128
(
1
), pp.
213
217
.
7.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
(
2
), pp.
313
327
.
8.
Li
,
Y. Z.
,
Madhusudana
,
C. V.
, and
Leonardi
,
E.
, 1998, “
Experimental Investigation of Thermal Contact Conductance: Variations of Surface Microhardness and Roughness
,”
Int. J. Thermophys.
0195-928X,
19
(
6
), pp.
1691
1704
.
9.
Mikic
,
B.
, 1971, “
Analytical Studies of Contact of Nominally Flat Surfaces; Effect of Previous Loading
,”
ASME J. Lubr. Technol.
0022-2305,
93
(
4
), pp.
451
456
.
10.
Greenwood
,
J. A.
, and
Wu
,
J. J.
, 2001, “
Surface Roughness and Contact: An Apology
,”
Meccanica
0025-6455,
36
(
6
), pp.
617
630
.
11.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
1364-5021,
243
, pp.
190
205
.
12.
Borri-Brunetto
,
M.
,
Carpinteri
,
A.
, and
Chiaia
,
B.
, 1999, “
Scaling Phenomena Due to Fractal Contact in Concrete and Rock Fractures
,”
Int. J. Fract.
0376-9429,
95
(
1–4
), pp.
221
238
.
13.
Borri-Brunetto
,
M.
,
Chiaia
,
B.
, and
Ciavarella
,
M.
, 2001, “
Incipient Sliding of Rough Surfaces in Contact: A Multiscale Numerical Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
46–47
), pp.
6053
6073
.
14.
Hyun
,
S.
,
Pel
,
L.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
, 2004, “
Finite-Element Analysis of Contact Between Elastic Self-Affine Surfaces
,”
Phys. Rev. E
1063-651X,
70
(
22
), pp.
026117
.
15.
Komvopoulos
,
K.
, and
Ye
,
N.
, 2001, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
0742-4787,
123
(
3
), pp.
632
640
.
16.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
(
1
), pp.
1
11
.
17.
Warren
,
T. L.
, and
Krajcinovic
,
D.
, 1995, “
Fractal Models of Elastic-Perfectly Plastic Contact of Rough Surfaces Based on the Cantor Set
,”
Int. J. Solids Struct.
0020-7683,
32
(
19
), pp.
2907
2922
.
18.
Willner
,
K.
, 2004, “
Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
28
33
.
19.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
(
7
), pp.
3617
3624
.
20.
Borodich
,
F. M.
, and
Persson
,
B. N. J.
, 2002, “
Comment on Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
0031-9007,
88
(
6
), pp.
069601
.
21.
Wang
,
S.
,
Shen
,
J.
, and
Chen
,
W. K.
, 2006, “
Determination of the Fractal Scaling Parameter From Simulated Fractal Regular Surface Profiles Based on the Weierstrass-Mandelbrot Function (IJTC2006–12068)
,”
STLE∕ASME International Joint Tribology Conference
,
San Antonio, TX
.
22.
Chaudhri
,
M. M.
,
Hutchings
,
I. M.
, and
Makin
,
P. L.
, 1984, “
Plastic Compression of Spheres
,”
Philos. Mag. A
0141-8610,
49
(
4
), pp.
493
503
.
23.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
, 2000, “
Frictionless Indentation of Dissimilar Elastic-Plastic Spheres
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
7071
7091
.
24.
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2004, “
Analysis of Spherical Indentation Cycle of Elastic-Perfectly Plastic Solids
,”
J. Mater. Res.
0884-2914,
19
, pp.
3641
3653
.
25.
Jackson
,
R. L.
, 2006, “
The Effect of Scale Dependant Hardness on Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Trans.
1040-2004,
49
(
2
), pp.
135
150
.
26.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact
,”
ASME J. Tribol.
0742-4787,
127
(
2
), pp.
343
354
.
27.
Wei
,
Y.
, and
Hutchinson
,
J. W.
, 2003, “
Hardness Trends in Micron Scale Indentation
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
2037
2056
.
28.
Yovanovich
,
M. M.
, and
Hegazy
,
A.
, 1983, “
An Accurate Universal Contact Conductance Correlation for Conforming Rough Surfaces With Different Micro-Hardness Profiles
,”
Proceedings AIAA 18th Thermophysics Conference
,
Montreal, QC, Canada
.
29.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2006, “
A Multiscale Model for Contact Between Rough Surfaces
,”
Wear
0043-1648,
261
(
11–12
), pp.
1337
1347
.
30.
Almeida
,
L.
,
Ishikawa
,
Yu Q.
,
Jackson
,
R.
, and
Ramadoss
,
R.
, “
Experimental and Theoretical Investigation of Contact Resistance and Reliability of Lateral Contact Type Ohmic MEMS Relays
,”
SPIE 2006 Reliability, Packaging, Testing, and Characterization of MEMS∕MOEMS, SPIE & Photonics West MOEMS-MEMS MICRO & NANOFABRICATION Symposium
,
San Jose, CA
.
31.
Bora
,
C. K.
,
Flater
,
E. E.
,
Street
,
M. D.
,
Redmond
,
J. M.
,
Starr
,
M. J.
,
Carpick
,
R. W.
, and
Plesha
,
M. E.
, 2005, “
Multiscale Roughness and Modeling of MEMS Interfaces
,”
Tribol. Lett.
1023-8883,
19
(
1
), pp.
37
48
.
32.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
(
1994
), pp.
387
405
.
33.
Ciavarella
,
M.
,
Murolo
,
G.
,
Demelio
,
G.
, and
Barber
,
J. R.
, 2004, “
Elastic Contact Stiffness and Contact Resistance for the Weierstrass Profile
,”
J. Mech. Phys. Solids
0022-5096,
52
(
6
), pp.
1247
1265
.
34.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1993, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
1825
1857
.
35.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
,
Hutchinson
,
J. W.
, 1994, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
0956-7151,
42
(
2
), pp.
475
487
.
36.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
, 1999, “
Mechanism-Based Strain Gradient Plasticity-I
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
1239
1263
.
37.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
, 2000, “
Mechanism-Based Strain Gradient Plasticity-II. Analysis
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
99
128
.
38.
Hutchinson
,
J. W.
, 2000, “
Plasticity at the Micron Scale
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
225
238
.
39.
Saha
,
S.
, and
Shi
,
L.
, 2005, “
Molecular Dynamics Simulation of Thermal Transport at Nanometer Size Point Contacts on a Planar Silicon Substrate
,” San Francisco, CA, United States, American Society of Mechanical Engineers, New York.
40.
Weber
,
L.
,
Gmelin
,
E.
, and
Queisser
,
H. J.
, 1989, “
Thermal Resistance of Silicon Point Contacts
,”
Phys. Rev. B
0163-1829,
40
, pp.
1244
1249
.
41.
Weber
,
L.
,
Lehr
,
M.
, and
Gmelin
,
E.
, 1996, “
Investigation of the Transport Properties of Gold Point Contacts
,”
Physica B
0921-4526,
217
(
3–4
), pp.
181
192
.
42.
Little
,
W. A.
, 1959, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
0008-4204,
37
, pp.
334
349
.
43.
Chen
,
G.
, 1996, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
539
545
.
44.
Prasher
,
R.
, 2005, “
Predicting the Thermal Resistance of Nanosized Constrictions
,”
Nano Lett.
1530-6984,
5
(
11
), pp.
2155
2159
.
45.
Chen
,
G.
, 2004, “
Nanoscale Heat Transfer and Nanostructured Thermoelectrics
,”
Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference
,
Las Vegas, NV
,
IEEE Inc.
,
Piscataway, NJ
.
46.
Song
,
S.
, and
Yovanovich
,
M. M.
, 1988, “
Relative Contact Pressure: Dependence on Surface Roughness and Vickers Microhardness
,”
Int. J. Thermophys.
0195-928X,
2
(
1
), pp.
43
47
.
47.
Hegazy
,
A.
, 1985, “
Thermal Joint Conductance of Conforming Rough Surfaces: Effect of Surface Micro-Hardness Variation
,” Ph.D. thesis, University of Waterloo.
48.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2005, “
A Multiscale Model for Contact Between Rough Surfaces
,”
World Tribology Conference III
Washington, DC
.
49.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
50.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
(
2
), pp.
257
263
.
51.
Zhao
,
Y.
,
Maletta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
86
93
.
52.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
(
5
), pp.
657
662
.
53.
Johnson
,
K. L.
, 1968,
An Experimental Determination of the Contact Stresses Between Plastically Deformed Cylinders and Spheres in Engineering Plasticity
,
Cambridge University Press
,
Cambridge
.
54.
Ling
,
F. F.
, 1958, “
Some Factors Influencing the Area-Load Characteristics for Semismooth Contiguous Surfaces Under Static Loading
,”
Trans. ASME
0097-6822,
80
, pp.
1113
1120
.
55.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
411
425
.
56.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
, 2002, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
681
694
.
57.
Lou
,
J.
,
Shrotriya
,
P.
,
Buchheit
,
T.
,
Yang
,
D.
, and
Soboyejo
,
W. O.
, 2003, “
A Nano-Indentation Study on the Plasticity Length Scale Effects in LIGA Ni MEMS Structures
,”
J. Mater. Sci.
0022-2461,
38
, pp.
4137
4143
.
58.
Ashby
,
M.
,
Shercliff
,
H.
, and
Cebon
,
D.
, 2007,
Materials Engineering, Science, Processing and Design
,
Elsevier
,
New York
.
59.
Jackson
,
R. L.
,
Chusoipin
,
I.
, and
Green
,
I.
, 2005, “
A Finite Element Study of the Residual Stress and Strain Formation in Spherical Contacts
,”
ASME J. Tribol.
0742-4787,
127
(
3
), pp.
484
493
.
60.
Jackson
,
R. L.
,
Marghitu
,
D.
, and
Green
,
I.
, 2007, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
ASME J. Tribol.
0742-4787, submitted.
61.
Luan
,
B.
, and
Robbins
,
M. O.
, 2005, “
The Breakdown of Continuum Models for Mechanical Contacts
,”
Nature (London)
0028-0836
435
(
7044
), pp.
929
932
.
62.
Gouldstone
,
A.
,
Chollacoop
,
N.
,
Dao
,
M.
,
Li
,
J.
,
Minor
,
A. M.
, and
Shen
,
Y.-L.
, 2007, “
Indentation Across Size Scales and Disciplines: Recent Developments in Experimentation and Modeling
,”
Acta Mater.
1359-6454,
55
(
12
), pp.
4015
4039
.
63.
Prasher
,
R.
, and
Phelan
,
P. E.
, 2006, “
Microscopic and Macroscopic Thermal Contact Resistances of Pressed Mechanical Contacts
,”
J. Appl. Phys.
0021-8979,
100
(
6
),
063538
.
64.
Madhusudana
,
C. V.
, 1996,
Thermal Contact Conductance
,
Springer-Verlag
,
New York
.
65.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
, 1969, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
279
300
.
You do not currently have access to this content.