Ultrashort-pulsed laser irradiation on metals creates a thermal nonequilibrium between electrons and the phonons. Previous computational studies used the two-temperature model and its variants to model this nonequilibrium. However, when the laser pulse duration is smaller than the relaxation time of the energy carriers or when the carriers’ mean free path is larger than the material dimension, these macroscopic models fail to capture the physics accurately. In this paper, the nonequilibrium between energy carriers is modeled via a numerical solution of the Boltzmann transport model (BTM) for electrons and phonons, which is applicable over a wide range of lengths and time scales. The BTM is solved using the discontinuous Galerkin finite element method for spatial discretization and the three-step Runge–Kutta temporal discretization. Temperature dependent electron-phonon coupling factor and electron heat capacity are used due to the strong electron-phonon nonequilibrium considered in this study. The results from the proposed model are compared with existing experimental studies on laser heating of macroscale materials. The model is then used to study laser heating of gold films, by varying parameters such as the film thickness, laser fluence, and pulse duration. It is found that the temporal evolution of electron and phonon temperatures in nanometer size gold films is very different from the macroscale films. For a given laser fluence and pulse duration, the peak electron temperature increases with a decrease in the thickness of the gold film. Both film thickness and laser fluence significantly affect the melting time. For a fluence of 1000J/m2, and a pulse duration of 75 fs, gold films of thickness smaller than 100 nm melt before reaching electron-phonon equilibrium. However, for the film thickness of 2000 nm, even with the highest laser fluence examined, the electrons and phonons reach equilibrium and the gold film does not melt.

1.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
2.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layer Metals—II. Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2799
2808
.
3.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layer Metals—I. Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2789
2797
.
4.
Wellershoff
,
S.
,
Hohlfeld
,
J.
,
Gudde
,
J.
, and
Matthias
,
E.
, 1999, “
The Role of Electron-Phonon Coupling in Femtosecond Laser Damage of Metals
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
69
, pp.
S99
S107
.
5.
Al-Nimr
,
M. A.
, and
Arpaci
,
V. S.
, 2000, “
The Thermal Behavior of Thin Metal Films in Hyperbolic Two-Step Model
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2021
2028
.
6.
Chen
,
J. K.
, and
Beraun
,
J. E.
, 2001, “
Numerical Study of Ultrashort Laser Pulse Interactions With Metal Films
,”
Numer. Heat Transfer, Part A
1040-7782,
40
, pp.
1
20
.
7.
Chen
,
J. K.
,
Tzou
,
D. Y.
, and
Beraun
,
J. E.
, 2006, “
A Semiclassical Two-Temperature Model for Ultrasfast Laser Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
307
316
.
8.
Stuart
,
B.
,
Feit
,
M. D.
,
Herman
,
S.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
, 1996, “
Optical Ablation by High Power Short-Pulse Lasers
,”
J. Opt. Soc. Am. B
0740-3224,
13
, pp.
459
468
.
9.
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2007, “
Substrate Influence in Electron-Phonon Coupling Measurements in Thin Au Films
,”
Appl. Surf. Sci.
0169-4332,
253
, pp.
6289
6294
.
10.
Tien
,
C.
,
Majumdar
,
A.
, and
Gerner
,
F.
, 1997,
Microscale Energy Transport
,
Taylor & Francis
,
New York
.
11.
Chen
,
G.
,
Borca-Tasciuc
,
D.
, and
Yang
,
R.
, 2004, “
Nanoscale Heat Transfer
,”
Encyclopedia of Nanoscience and Nanotechnology
, Vol.
17
,
H. S.
Nalwa
, ed.,
American Scientific Publishers
, pp.
429
459
.
12.
Kaganov
,
M. I.
,
Lifshitz
,
I. M.
, and
Tanatarov
,
L. V.
, 1957, “
Relaxation Between Electrons and Crystalline Lattices
,”
Sov. Phys. JETP
0038-5646,
4
, pp.
173
178
.
13.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel’man
,
T. L.
, 1974, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
Sov. Phys. JETP
0038-5646,
39
, pp.
375
377
.
14.
Fujimoto
,
J. G.
,
Liu
,
J. M.
, and
Ippen
,
E. P.
, 1984, “
Femtosecond Laser Interaction With Metallic Tungsten and Non-Equilibrium Electron and Lattice Temperature in Thin Gold Film
,”
Phys. Rev. Lett.
0031-9007,
53
, pp.
1837
1840
.
15.
Brorson
,
S. D.
,
Fujimoto
,
J. G.
, and
Ippen
,
E. P.
, 1987, “
Femtosecond Electronic Heat-Transfer Dynamics in Thin Gold Film
,”
Phys. Rev. Lett.
0031-9007,
59
, pp.
1962
1965
.
16.
Lin
,
Z.
,
Zhigilei
,
L. V.
, and
Celli
,
V.
, 2008, “
Electron-Phonon Coupling and Electron Heat Capacity of Metals Under Conditions of Strong Electron-Phonon Nonequilibrium
,”
Phys. Rev. B
0163-1829,
77
, p.
075133
.
17.
Abelès
,
F.
, 1967, “
Optics of Thin Films
,”
Advanced Optical Techniques
,
A. C. S.
Van Heel
, ed.,
North-Holland
,
Amsterdam
.
18.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Holt, Rinehart and Winston
,
New York
.
19.
Joshi
,
A.
, and
Majumdar
,
A.
, 1993, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
0021-8979,
74
, pp.
31
39
.
20.
Ziman
,
J. M.
, 1960,
Electrons and Phonons
,
Oxford University Press
,
London, UK
.
21.
Pattamatta
,
A.
, and
Madnia
,
C. K.
, 2009, “
A Comparative Study of Two-Temperature and Boltzmann Transport Models for Electron-Phonon Non-Equilibrium
,”
Numer. Heat Transfer, Part A
1040-7782,
55
(
7
), pp.
611
633
.
22.
Pattamatta
,
A.
, and
Madnia
,
C. K.
, 2009, “
Modeling Heat Transfer in Bi2Ti3–Sb2Te3 Nanostructures
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
860
869
.
23.
Anisimov
,
S. I.
, and
Rethfeld
,
B.
, 1997, “
On the Theory of Ultrashort Laser Pulse Interaction With Metal
,”
Proc. SPIE
0277-786X,
3093
, pp.
192
203
.
24.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
, 1970, “
Thermal Conductivity
,”
Thermophysical Properties of Matter
,
Plenum
,
New York
,
1
, pp.
132
137
.
25.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
, 1970, “
Specific Heat
,”
Thermophysical Properties of Matter
,
Plenum
,
New York
,
4
, pp.
83
86
.
26.
Cockburn
,
B.
,
Karniadakis
,
G. E.
, and
Shu
,
C. -W.
, 2000,
Discontinuous Galerkin Methods: Theory, Computation and Applications
,
Springer-Verlag
,
Berlin
.
27.
Cockburn
,
B.
, and
Shu
,
C. -W.
, 2001, “
Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems
,”
J. Sci. Comput.
0885-7474,
16
(
3
), pp.
173
261
.
28.
Cui
,
X.
, and
Li
,
B. Q.
, 2004, “
A Discontinuous Finite-Element Formulation for Internal Radiation Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
46
, pp.
223
242
.
29.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
419
425
.
30.
Hostetler
,
J. L.
,
Smith
,
A. N.
,
Czajkowsky
,
D. M.
, and
Norris
,
P. M.
, 1999, “
Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al
,”
Appl. Opt.
0003-6935,
38
(
16
), pp.
3614
3620
.
You do not currently have access to this content.