Thermal and hydrodynamic experimental results of a flat plate heat pipe (FPHP) are presented. The capillary structure is made of crossed grooves machined in a copper plate. The shape of the liquid-vapor interface in this type of capillary structure—that can also be viewed as an array of posts—is studied theoretically and experimentally. A confocal microscope is used to visualize the liquid-vapor interface and thus the capillary pressure field in the system. These hydrodynamic measurements, coupled to temperature measurements on the FPHP wall, are used to estimate the permeability and the equivalent thermal conductivity of the capillary structure filled with methanol or FC72. These parameters are obtained from a comparison between the experimental data and an analytical model. Finally, the model is used to compare the draining capability of crossed grooves with that of longitudinal grooves.

1.
Lallemand
,
M.
, and
Lefèvre
,
F.
, 2004, “
Micro/Mini Heat Pipes for the Cooling of Electronic Devices
,”
Thirteenth International Heat Pipe Conference
, Shanghai, China, pp.
12
22
.
2.
Groll
,
M.
,
Schneider
,
M.
,
Sartre
,
V.
,
Zaghdoudi
,
M. C.
, and
Lallemand
,
M.
, 1998, “
Thermal Control of Electronic Equipment by Heat Pipes
,”
Rev. Gen. Therm.
0035-3159,
37
, pp.
323
352
.
3.
Rullière
,
R.
,
Lefèvre
,
F.
, and
Lallemand
,
M.
, 2007, “
Prediction of the Maximum Heat Transfer Capability of Two-Phase Heat Spreaders—Experimental Validation
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
1255
1262
.
4.
Lefèvre
,
F.
,
Rullière
,
R.
,
Pandraud
,
G.
, and
Lallemand
,
M.
, 2008, “
Prediction of the Temperature Field in Flat Plate Heat Pipes With Micro-Grooves—Experimental Validation
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4083
4094
.
5.
Shen
,
D. S.
,
Mitchell
,
R. T.
,
Dobranich
,
D.
,
Adkins
,
D. R.
, and
Tuck
,
M. R.
, 1995, “
Micro Heat Spreader Enhanced Heat Transfer in MCMs
,”
IEEE MCMC’95 Conference
, Santa Cruz, pp.
189
194
.
6.
Benson
,
D. A.
,
Mitchell
,
R. T.
,
Tuck
,
M. R.
,
Palmer
,
D. W.
, and
Peterson
,
G. P.
, 1998, “
Ultrahigh-Capacity Micromachined Heat Spreaders
,”
Microscale Thermophys. Eng.
1089-3954,
2
, pp.
21
30
.
7.
Gromoll
,
B.
, 1998, “
Micro Cooling Systems for High Density Packaging
,”
Rev. Gen. Therm.
0035-3159,
37
, pp.
781
787
.
8.
Avenas
,
Y.
,
Ivanova
,
M.
,
Schaeffer
,
C.
,
Perret
,
R.
, and
Sanchez
,
J. -L.
, 2003, “
Etude et réalisation de caloducs à réseau capillaire à picots carrés pour le refroidissement en électronique
,”
Congrès Français de Thermique, SFT
, Grenoble, Jun. 3–6, pp.
913
918
.
9.
Ivanova
,
M.
,
Lai
,
A.
,
Gillot
,
C.
,
Sillon
,
N.
,
Shaeffer
,
C.
,
Lefèvre
,
F.
,
Lallemand
,
M.
, and
Fournier
,
E.
, 2006, “
Design, Fabrication and Test of Silicon Heat Pipes With Radial Microcapillary Grooves
,”
ITHERM 2006
, San Diego, May 30–Jun. 2.
10.
Lefèvre
,
F.
,
Rullière
,
R.
,
Lips
,
S.
, and
Bonjour
,
J.
, 2010, “
Confocal Microscopy Applied to Capillary Film Measurements in a Radial Flat Plate Heat Pipe Made of Silicon
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
031502
.
11.
Lips
,
S.
,
Lefèvre
,
F.
, and
Bonjour
,
J.
, 2010, “
Combined Effects of the Filling Ratio and the Vapour Space Thickness on the Performance of a Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
694
702
.
12.
Longtin
,
J. P.
,
Badran
,
B.
, and
Gerner
,
F. M.
, 1994, “
A One-Dimensional Model of a Micro Heat Pipe During Steady-State Operation
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
709
715
.
13.
Launay
,
S.
,
Sartre
,
V.
,
Mantelli
,
M. B. H.
,
de Paiva
,
K. V.
, and
Lallemand
,
M.
, 2004, “
Investigation of a Wire Plate Micro Heat Pipe Array
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
499
507
.
14.
Wang
,
Y. X.
, and
Peterson
,
G. P.
, 2002, “
Analysis of Wire-Bonded Micro Heat Pipe Arrays
,”
J. Thermophysics Heat Transfer
0887-8722,
16
, pp.
346
355
.
15.
Huang
,
X. Y.
, and
Liu
,
C. Y.
, 1996, “
The Pressure and Velocity Fields in the Wick Structure of a Localized Heated Heat Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
1325
1330
.
16.
Qin
,
W.
, and
Liu
,
C. Y.
, 1997, “
Liquid Flow in the Anisotropic Wick Structure of a Flat Plate Heat Pipe Under Block-Heating Condition
,”
Appl. Therm. Eng.
1359-4311,
17
, pp.
339
349
.
17.
Zhu
,
N.
, and
Vafai
,
K.
, 1998, “
Vapor and Liquid Flow in a Asymmetrical Flat Plate Heat Pipe: A Three Dimensional Analytical and Numerical Investigation
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
159
174
.
18.
Zuo
,
Z. J.
, and
North
,
M. T.
, 1999, “
Improved Heat Pipe Performance Using Graded Wick Structures
,”
Eleventh IHPC Musachinoshi-Tokyo
, Vol.
2
, pp.
80
84
.
19.
Lefèvre
,
F.
, and
Lallemand
,
M.
, 2006, “
Coupled Thermal and Hydrodynamic Models of Flat Micro Heat Pipes for the Cooling of Multiple Electronic Components
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1375
1383
.
20.
Revellin
,
R.
,
Rullière
,
R.
,
Lefèvre
,
F.
, and
Bonjour
,
J.
, 2009, “
Experimental Validation of an Analytical Model for Predicting the Thermal and Hydrodynamic Capabilities of Flat Micro Heat Pipes
,”
Appl. Therm. Eng.
1359-4311,
29
, pp.
1114
1122
.
21.
Lips
,
S.
,
Lefèvre
,
F.
, and
Bonjour
,
J.
, 2009, “
Thermal and Hydrodynamic Study of a Flat Plate Heat Pipe
,”
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics ExHFT-7
, Krakow, Poland, Jun. 28–Jul. 03.
22.
Lips
,
S.
,
Lefevre
,
F.
, and
Bonjour
,
J.
, 2009, “
Nucleate Boiling in a Flat Grooved Heat Pipe
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
1273
1278
.
23.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor & Francis
,
London
.
You do not currently have access to this content.