The nominally one-dimensional conduction of heat through a slab becomes two dimensional when one of the surfaces is rough or when the boundary conditions are spatially nonuniform. This paper develops the stochastic equations for a slab whose surface roughness or convective boundary condition is spatially correlated with correlation lengths ranging from 0 (white noise) to a length long in comparison to the slab thickness. The effect is described in terms of the standard deviation and the resulting spatial correlation of the heat flux as a function of depth into the slab. In contrast to the expectation that the effect is monotonic with respect to the correlation length, it is shown that the effect is maximized at an intermediate correlation length. It is also shown that roughness or a random convective heat transfer coefficient have essentially the same effects on the conducted heat, but that the combination results in a much deeper penetration than does each effect individually. In contrast to the usual methods of solving stochastic problems, both the case of a rough edge and a smooth edge with stochastic convective heat transfer coefficients can only be treated with reasonable computational expense by using direct Monte Carlo simulations.

1.
Reeve
,
H. M.
,
Mescher
,
A. M.
, and
Emery
,
A. F.
, 2004, “
Investigation of Steady State Drawing Force and Heat Transfer in Polymer Optical Fiber Manufacturing
,”
ASME J. Heat Transfer
0022-1481,
126
(
2
), pp.
236
243
.
2.
Ghanem
,
R.
, and
Brzakala
,
W.
, 1996, “
Stochastic Finite Element Analysis of Soil Layers With Random Interface
,”
J. Eng. Mech.
0733-9399,
122
(
4
), pp.
361
369
.
3.
Lin
,
G.
,
Su
,
C. -H.
, and
Karniadakis
,
G. E.
, 2007, “
Random Roughness Enhances Lift in Supersonic Flow
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
104501
.
4.
Nair
,
P. B.
,
Mohan
,
S. P.
,
Bryan
,
R.
,
Kenae
,
A. J.
, and
Taylor
,
M.
, 2008, “
Tackling Geometric Uncertainty: Stochastic Projection Schemes
,”
ECCOMAS Conference
, Venice, Italy.
5.
Xiu
,
D.
, and
Tartakovsky
,
D. M.
, 2006, “
Numerical Methods for Differential Equations in Random Domains
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
28
(
3
), pp.
1167
1185
.
6.
Rathish Kumar
,
B. V.
, 2000, “
A Study of Free Convection Induced by a Vertical Wavy Surface With Heat Flux in a Porous Enclosure
,”
Numer. Heat Transfer, Part A
1040-7782,
37
(
5
), pp.
493
510
.
7.
Vanmarcke
,
E.
, and
Grigoriu
,
M.
, 1983, “
Stochastic Finite Element Analysis of Simple Beams
,”
J. Eng. Mech.
0733-9399,
109
(
5
), pp.
1203
1214
.
8.
Li
,
C. -C.
, and
Der Kiureghian
,
A.
, 1993, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
0733-9399,
119
(
6
), pp.
1136
1154
.
9.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 2003,
Stochastic Finite Elements
,
Dover
,
Mineola, NY
.
10.
Sakamoto
,
S.
, and
Ghanem
,
R.
, 2002, “
Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Nonstationary Stochastic Processes
,”
J. Eng. Mech.
0733-9399,
128
(
2
), pp.
190
201
.
11.
Phoon
,
K. K.
,
Huang
,
H. W.
, and
Quek
,
S. T.
, 2005, “
Simulation of Strongly Non-Gaussian Processes Using Karhunen-Loeve Expansion
,”
Probab. Eng. Mech.
0266-8920,
20
, pp.
188
198
.
12.
Spanos
,
P. D.
,
Beer
,
M.
, and
Red-Horse
,
J.
, 2007, “
Karhunen-Loéve Expansion of Stochastic Processes With a Modified Exponential Covariance Kernel
,”
J. Eng. Mech.
0733-9399,
133
(
7
), pp.
773
779
.
13.
Jackson
,
J. E.
, 1991,
A User’s Guide to Principal Components
,
Wiley
,
New York
.
14.
Le Maitre
,
O. P.
,
Reagan
,
M. T.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
, 2002, “
A Stochastic Projection Method for Fluid Flow II Random Processes
,”
J. Comput. Phys.
0021-9991,
181
, pp.
9
44
.
15.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
Modeling Uncertainty in Steady State Diffusion Problems Via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4927
4948
.
16.
Hurtado
,
J. E.
, and
Barbat
,
A. H.
, 1998, “
Monte Carlo Techniques in Computational Stochastic Mechanics
,”
Arch. Comput. Methods Eng.
1134-3060,
5
(
1
), pp.
3
29
.
17.
2009, COMSOL Multiphysics Ver. 3.5, COMSOL, Inc., Palo Alto, CA.
18.
Emery
,
A. F.
, and
Bardot
,
D.
, 2007, “
The Determination of the Sensitivity of Heat Transfer Systems Using Global Sensitivity and Gaussian Processes
,”
ASME Trans. J. Heat Transfer
0022-1481,
129
(
8
), pp.
1075
1081
.
19.
Klimke
,
A.
, and
Wohlmuch
,
B.
, 2005, “
Algorithm 847: Spinterp: Piecewise Multilinear Hierarchical Sparse Grid Interpolation in MATLAB
,”
ACM Trans. Math. Softw.
0098-3500,
31
(
4
), pp.
561
579
.
20.
Heiss
,
F.
, and
Winschel
,
V.
, 2008, “
Likelihood Approximation by Numerical Integration on Sparse Grids
,”
J. Econometr.
0304-4076,
144
, pp.
62
80
.
You do not currently have access to this content.