A novel algorithm has been developed for the nondestructive determination of the shape of the interface between a melt and a refractory material wall in smelter furnaces. This method uses measurements of temperature and heat flux at a number of points on the outer surface of the furnace, and assumes that the inner (guessed) surface of the furnace wall is isothermal. The temperature field is then predicted in the entire furnace wall material by numerically solving a steady state heat conduction equation subject to the measured temperature values on the external surface and the isothermal melt material solidus temperature on the inner surface of the wall. The byproduct of this analysis is the computed heat flux on the external surface. The difference between the measured and the computed heat fluxes on the outer surface of the furnace is then used as a forcing function in an elastic membrane motion concept to determine perturbations to the inner (melt-refractory) surface motion. The inverse determination of the melt-refractory interface shape can be achieved by utilizing this algorithm and any available analysis software for the temperature field in the refractory wall. The initial guess of the inner shape of the wall can be significantly different from the final (unknown) wall shape. The entire wall shape determination procedure requires typically 5–15 temperature field analyses in the furnace wall material.

1.
Dulikravich
,
G. S.
, and
Martin
,
T. J.
, 1996, “
Inverse Shape and Boundary Condition Problems and Optimization in Heat Conduction
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor & Francis
,
London
, Vol.
1
, pp.
381
426
.
2.
Dennis
,
B. H.
, and
Dulikravich
,
G. S.
, 1999, “
Simultaneous Determination of Temperatures, Heat Fluxes, Deformations, and Tractions on Inaccessible Boundaries
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
537
545
.
3.
Yoshikawa
,
F.
, and
Szekely
,
J.
, 1981, “
Mechanism of Blast Furnace Hearth Erosion
,”
Ironmaking Steelmaking
0301-9233,
8
, pp.
159
168
.
4.
Yoshikawa
,
H.
, et al.
, 1984, “
Estimation of Erosion Line of Refractory and Solidification Layer in Blast Furnace Hearth
,”
Proceedings of the Fourth Conference on Simulation Technology
, Japan Society for Simulation Technology, pp.
75
78
.
5.
Yoshikawa
,
F.
,
Nigo
,
S.
,
Kiyohara
,
S.
,
Taguchi
,
S.
,
Takahashi
,
H.
, and
Ichimiya
,
M.
, 1987, “
Estimation of Refractory Wear and Solidified Layer Distribution in the Blast Furnace Hearth and Its Application to the Operation
,”
Tetsu to Hagane
0021-1575,
73
(
15
), pp.
2068
2075
.
6.
Shin
,
M.
, and
Lee
,
J. -W.
, 2000, “
Prediction of the Inner Wall Shape of an Eroded Furnace by the Nonlinear Inverse Heat Conduction Technique
,”
JSME Int. J., Ser. B
1340-8054,
43
(
4
), pp.
544
549
.
7.
Takatani
,
K.
,
Inada
,
T.
, and
Takata
,
K.
, 2001, “
Mathematical Model for Transient Erosion Process of Blast Furnace Hearth
,”
ISIJ Int.
0915-1559,
41
(
10
), pp.
1139
1145
.
8.
Matsevity
,
Y. M.
,
Moultanovsky
,
A. V.
, and
Nemirovsky
,
I. A.
, 1988, “
Simulation of Thermal State Discretely Cooled Constructions of Units of Non-Ferrous Metallurgy
,”
Promenergetika
,
1
, pp.
42
44
.
9.
Matsevity
,
Y. M.
,
Moultanovsky
,
A. V.
, and
Timchenko
,
V. M.
, 1991, “
Diagnostics of Destruction of Cooled Caisson Wall Units on the Base of Identification of Heat Transfer Conditions
,”
Promyshlennaya Teplotekhnika
,
13
(
3
), pp.
3
12
.
10.
Kostikov
,
A. O.
, and
Matsevity
,
Y. M.
, 1998, “
Determination of Thickness of Heat Transferring Wall With the Help of Solving Geometrical Inverse Heat Conduction Problem
,”
Problemy Mashinostroeniya
,
1
(
3–4
), pp.
52
59
.
11.
Matsevity
,
Y. M.
,
Timchenko
,
V. M.
, and
Kostikov
,
A.
, 2001, “
Identification of Destruction in Metallurgical Equipment by Solving the Inverse Heat Conduction Problems
,”
Proceedings of the ICHMT Symposium CHT'01—Advances in Computational Heat Transfer
,
Davis G.
de Vahl
and
E.
Leonardi
, eds.,
Begell House Inc.
,
New York
, Vol.
2
, pp.
1145
1152
.
12.
Preuer
,
A.
,
Winter
,
J.
, and
Hiebler
,
H.
, 1992, “
Computation of the Erosion in the Hearth of a Blast Furnace
,”
Steel Res.
0177-4832,
63
(
4
), pp.
147
151
.
13.
Druckenthaner
,
H.
, et al.
, 1998, “
Online Simulation of the Blast Furnace
,”
Advanced Steel
, pp.
58
61
.
14.
Radmoser
,
E.
, 1998, “
Security-Related Parts of a Blast Furnace Model
,” ECMI Newsletter No. 23.
15.
Sorli
,
K.
, and
Skaar
,
I. M.
, 1999, “
Monitoring the Wear-Line of a Melting Furnace
,”
Proceedings of the 3ICIPE, Third International Conference on Inverse Problems in Engineering
,
K.
Woodbury
, ed.,
ASME
,
New York
.
16.
Tanaka
,
M.
,
Matsumoto
,
T.
, and
Oida
,
S.
, 1998, “
Identification of Unknown Boundary Shape of Rotationally Symmetric Body in Steady Heat Conduction Via BEM and Filter Theories
,”
Inverse Problems in Engineering Mechanics—ISIP ‘98
,
M.
Tanaka
, and
G. S.
Dulikravich
, eds.,
Elsevier
,
New York
pp.
121
130
.
17.
Tanaka
,
M.
,
Matsumoto
,
T.
, and
Yano
,
T.
, 2000, “
A Combined Use of Experimental Design and Kalman Filter-BEM for Identification of Unknown Boundary Shape for Axisymmetric Bodies Under Steady-State Heat Conduction
,”
Proceedings of the Inverse Problems in Engineering Mechanics—ISIP ‘00
,
M.
Tanaka
and
G. S.
Dulikravich
, eds.,
Elsevier
,
New York
pp.
3
12
.
18.
Katamine
,
E.
,
Azegami
,
H.
, and
Kojima
,
M.
, 1999, “
Boundary Shape Determination on Steady-State Heat Conduction Fields
,”
JSME Int. J., Ser. B
1340-8054,
65
(
629
), pp.
275
281
.
19.
Huang
,
D.
,
Chaubal
,
P.
,
Abramowitz
,
H.
, and
Zhou
,
C.
, 2005, “
Hearth Skulls and Hearth Wear Investigation of ISPAT Inland’s #7 Blast Furnace
,”
Proceedings of the AIST 2005
, Charlotte, NC, Vol.
1
, pp.
101
112
.
20.
Roldan
,
D.
, 2005, “
Numerical Investigation of the Erosion in a Blast Furnace Hearth
,” MS thesis, Purdue University Calumet, IN.
21.
Dulikravich
,
G. S.
, and
Baker
,
D. P.
, 1998, “
Fourier Series Analytical Solution for Inverse Design of Aerodynamic Shapes
,”
Inverse Problems in Engineering Mechanics—ISIP ‘98
,
M.
Tanaka
and
G. S.
Dulikravich
, eds.,
Elsevier
,
UK
, pp.
427
436
.
22.
Dulikravich
,
G. S.
, and
Baker
,
D. P.
, 1999, “
Using Existing Flow-Field Analysis Codes for Inverse Design of Three-dimensional Aerodynamic Shapes
,”
Recent Development of Aerodynamic Design Methodologies—Inverse Design and Optimization
,
K.
Fujii
and
G. S.
Dulikravich
, eds., Vol.
68
,
Springer
,
New York
, pp.
89
112
.
23.
Baker
,
D. P.
, 1999, “
A Fourier Series Approach to the Elastic Membrane Inverse Shape Design Problem in Aerodynamics
,” MS thesis, Department of Aerospace Engineering, Pennsylvania State University, University Park, PA.
24.
Baker
,
D. P.
,
Dulikravich
,
G. S.
,
Martin
,
T. J.
, and
Dennis
,
B. H.
, 2003, “
Inverse Determination of Smelter Wall Erosion Shapes Using a Fourier Series Method
,”
Proceedings of the International Symposium on Inverse Problems in Engineering Mechanics—ISIP ‘03
, Nagano, Japan, Feb. 18–21.
25.
Han
,
Z. -X.
,
Dennis
,
B. H.
, and
Dulikravich
,
G. S.
, 2001, “
Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material
,”
Int. J. Turbo Jet Engines
0334-0082,
18
(
1
), pp.
47
58
.
26.
Dulikravich
,
G. S.
, 1999, “
Electro-Magneto-Hydrodynamics and Solidification
,”
Advances in Flow and Rheology of Non-Newtonian Fluids, Part B
,
D. A.
Siginer
,
D.
De Kee
, and
R. P.
Chhabra
, eds.,
Elsevier
,
New York
, Vol.
8
, pp.
677
716
.
27.
Garabedian
,
P.
, and
McFadden
,
G.
, 1982, “
Design of Supercritical Swept Wings
,”
AIAA J.
0001-1452,
20
(
3
), pp.
289
291
.
28.
Dennis
,
B. H.
,
Eberhart
,
R. C.
,
Dulikravich
,
G. S.
, and
Radons
,
S. W.
, 2003, “
A Finite Element Simulation of Cooling of 3-D Human Head and Neck
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
832
840
.
29.
Marcum
,
D. L.
, and
Weatherhill
,
N. P.
, 1995, “
Unstructured Grid Generation Using Iterative Point Insertion and Local Reconnection
,”
AIAA J.
0001-1452,
33
(
9
), pp.
1619
1625
.
You do not currently have access to this content.